大家好~本课程为“深度学习基础班”的线上课程,带领同学从0开始学习全连接和卷积神经网络,进行数学推导,并且实现可以运行的Demo程序
线上课程资料:
本节课录像回放
加QQ群,获得ppt等资料,与群主交流讨论:106047770
本系列文章为线上课程的复盘,每上完一节课就会同步发布对应的文章
本课程系列文章可进入索引查看:
深度学习基础课系列文章索引
目录
\[\begin{aligned}
\frac{dE}{dw_{kj}} &=\delta_k a_j \\
&= \frac{dE}{dy_k}\frac{df(net_k)}{dnet_k} a_j \\
&=-\frac {2}{n}(y_{真实}-y_k) \frac{df(net_k)}{dnet_k} a_j
\end{aligned}
\]
\[\begin{aligned}
E = ?从而
\frac{dE}{dy_k}\frac{df(net_k)}{dnet_k} = \delta_k = y_k - y_{真实} \\
\end{aligned}
\]
答:
\[e = - \frac {1}{n} \sum_{i=1}^n (y_{真实}\ln{y_{输出}} + (1-y_{真实})\ln{(1-y_{输出})})
\]
答:待实现的代码为:CrossEntropyLoss_gender,实现后的代码为:CrossEntropyLoss_gender_answer
答:我们取20轮的训练结果
之前的代码的运行结果:
[ 'loss: ', 0.4507304592177789 ]
[ 'loss: ', 0.42877150239298367 ]
[ 'loss: ', 0.4003410570050336 ]
[ 'loss: ', 0.36471054740582803 ]
[ 'loss: ', 0.32348350190262276 ]
[ 'loss: ', 0.28148842822336106 ]
[ 'loss: ', 0.24435904667566208 ]
[ 'loss: ', 0.21478940821264678 ]
[ 'loss: ', 0.19217920769398236 ]
[ 'loss: ', 0.1746959045869208 ]
[ 'loss: ', 0.16069147885466947 ]
[ 'loss: ', 0.14903993518214445 ]
[ 'loss: ', 0.13904224985035976 ]
[ 'loss: ', 0.13027401434711444 ]
[ 'loss: ', 0.12247365805566274 ]
[ 'loss: ', 0.11547411658524662 ]
[ 'loss: ', 0.10916376857366585 ]
[ 'loss: ', 0.1034647748090702 ]
[ 'loss: ', 0.09832137076163855 ]
[ 'loss: ', 0.09369385876122124 ]
现在的代码的运行结果:
[ 'loss: ', 0.9942633398183269 ]
[ 'loss: ', 0.6659776522867806 ]
[ 'loss: ', 0.49140689993232145 ]
[ 'loss: ', 0.37709033494651706 ]
[ 'loss: ', 0.2994042613488786 ]
[ 'loss: ', 0.22748275377361313 ]
[ 'loss: ', 0.178710734329234 ]
[ 'loss: ', 0.14814081504087312 ]
[ 'loss: ', 0.1262728567509965 ]
[ 'loss: ', 0.10981773645519985 ]
[ 'loss: ', 0.09701072087557354 ]
[ 'loss: ', 0.08678048289782145 ]
[ 'loss: ', 0.07843471667890223 ]
[ 'loss: ', 0.07150614449993825 ]
[ 'loss: ', 0.06566841165919438 ]
[ 'loss: ', 0.06068705773306658 ]
[ 'loss: ', 0.05638955210782751 ]
[ 'loss: ', 0.05264627797401171 ]
[ 'loss: ', 0.049358078224151274 ]
[ 'loss: ', 0.04644787505022075 ]
通过比较最后一轮的结果,我们可以看到现在的代码的loss更接近0,所以更加收敛;
通过比较前三轮的结果,我们可以看到现在的代码在loss很大时训练速度更快
欢迎来到Wonder~
扫码加入我的QQ群:
扫码加入免费知识星球-YYC的Web3D旅程:
扫码关注微信公众号: