ref:http://www.engineering.org.cn/ch/10.1016/j.eng.2019.09.010
雷娜 , 安东生, 郭洋, 苏科华, 刘世霞, 罗钟铉, 丘成桐, 顾险峰
摘要
本文从几何角度来理解深度学习,特别是提出了生成对抗网络(GAN)的最优传输(OT)观点。自然数据集具有内在的模式,该模式可被概括为流形分布原理,即同一类高维数据分布于低维流形附近。 GAN主要完成流形学习和概率分布变换两项任务。其中,后者可以用经典的OT方法来实现。从OT的角度来看,生成器用于计算OT映射,而判别器用于计算生成数据分布与真实数据分布之间的Wasserstein距离;两者都可以归结为一个凸优化过程。此外, OT理论揭示了生成器与判别器之间的内在关系是协作的而不是竞争的,并且解释了模式崩溃的根本原因。在此基础上,我们提出了一种新的生成模型,该模型利用自编码器(AE)进行流形学习,并利用OT映射进行概率分布变换。这个AE-OT模型提升了深度学习理论的严谨性和透明性、提高了计算的稳定性和效率,尤其是避免了模式崩溃问题。实验结果验证了我们的假设,并充分展示了我们提出的AE-OT模型的优点。
关键词
生成,对抗,深度学习,最优传输,模式崩溃