热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

烧脑!CMU、北大等合著论文真的找到了神经网络的全局最优解

一直以来,我们都不知道为什么用一阶方法训练的神经网络已经对很多应用产生了显著影响,但其理论特性却依然

一直以来,我们都不知道为什么 深度神经网络 的损失能降到零,降到零不代表着全局最优了么?这不是和一般 SGD 找到的都是局部极小点相矛盾么?最近 CMU、清华和 MIT 的研究者分析了深层全连接网络和残差网络,并表示使用梯度下降训练过参数化的 深度神经网络 真的能找到全局最优解。

用一阶方法训练的神经网络已经对很多应用产生了显著影响,但其理论特性却依然是个谜。一个经验观察是,即使优化目标函数是非凸和非平滑的,随机初始化的一阶方法(如随机梯度下降)仍然可以找到全局最小值(训练损失接近为零),这是训练中的第一个神秘现象。令人惊讶的是,这个特性与标签无关。在 Zhang 等人的论文 [2016] 中,作者用随机生成的标签取代了真正的标签,但仍发现随机初始化的一阶方法总能达到零训练损失。

人们普遍认为过参数化是导致该现象的主要原因,因为神经网络只有具备足够大的容量时才能拟合所有训练数据。实际上,很多神经网络架构都高度过参数化。例如,宽残差网络(Wide Residual Network)的参数量是训练数据的 100 倍。

训练 深度神经网络 的第二个神秘现象是「更深的网络更难训练。」为了解决这个问题,何恺明等人在 2006 年提出了深度残差网络(ResNet)架构,用随机梯度下降方法来训练显著具有更多层数的神经网络。理论上来说,Hardt 和 Ma [2016] 表明,线性网络中的残差连接可以阻止梯度消失为零,但使用非线性激活函数的神经网络还无法利用残差连接的优势。

在本文中,作者将揭开这两个神秘现象的面纱。具体而言,作者们从理论上分析了损失函数在梯度下降上的收敛情况,即采用全连接网络和残差网络架构下的损失函数收敛情况。作者关注根据欧式距离定义的损失函数,并假设激活函数是 Lipschitz 和平滑的。这种假设适用于很多激活函数,包括 soft-plus。本文贡献如下:

首先考虑全连接前馈网络。作者表明,如果层级的神经元数量 烧脑!CMU、北大等合著论文真的找到了神经网络的全局最优解 ,则随机初始化的梯度下降会以线性速率收敛到零训练损失。

接下来考虑 ResNet 架构。作者表明,只要中间层的宽度 m = Ω (poly(n, H)),则随机初始化的梯度下降会以线性速率收敛到零训练损失。与第一个结果相比,ResNet 对网络层数的依赖呈指数级上升。该理论阐明了利用残差连接的优势。

最后,作者利用同样的技术来分析卷积 ResNet。作者表明,如果 m = poly(n, p, H),其中 p 是图像块数量,则随机初始化的梯度下降会达到零训练损失。

本文的证明是基于以前关于双层神经网络梯度下降研究中的两个重要概念。第一个是 Du 等人 [2018b] 提出的概念,本文作者分析了神经网络预测的动力学特征,即其收敛性由格拉姆矩阵(Gram matrix)的最小特征值决定。为了降低最小特征值的下界,从初始化开始限制每个权重矩阵的距离就足够了。其次,作者利用了 Li 和 Liang [2018] 的观察结果,即如果神经网络过参数化,则每个权重矩阵接近其初始化。与前两个研究不同,本文在分析 深度神经网络 时,需要构建更多 深度神经网络 的架构属性和新技术。在本文中,我们主要介绍了 ResNet 的分析结果,更详细的证明展示在原论文中的 29 页附录中。

论文:Gradient DescentFinds Global Minima of DeepNeural Networks

烧脑!CMU、北大等合著论文真的找到了神经网络的全局最优解

论文地址: https://arxiv.org/pdf/1811.03804.pdf

摘要:在训练 深度神经网络 时,即使目标函数是非凸的,梯度下降法也能找到全局最小值。本文证明了对于具有残差连接的深度超参数神经网络(ResNet),梯度下降可以在多项式时间内实现零训练损失。我们的分析依赖于神经网络架构引入的格拉姆矩阵的多项式结构。这种结构帮助我们证明格拉姆矩阵在训练过程中的稳定性,而且这种稳定性意味着梯度下降算法的全局最优性。我们的边界也揭示了使用 ResNet 优于全连接前馈架构的优点;对于前馈网络,我们的边界要求每层神经元的数量随深度进行指数缩放,而对于 ResNet,边界只要求每层神经元的数量随深度进行多项式缩放。我们还进一步将自己的分析扩展到深度残差卷积神经网络并得到了类似的收敛结果。

本文结构:第二节正式介绍了问题背景;第三节给出了在深度全连接神经网络上得到的主要结果;第四节给出了在 ResNet 上得到的主要结果;第五节给出了在卷积 ResNet 上得到的主要结果;第六节为以上三种架构提供了一个统一的证明策略。第 7 节为总结,证明见附录。

在论文的后面的章节中,大部分都在描述假设与推理。尤其在后面 29 页的附录中,作者给出了各推理的完整的证明。如果读者自信数学底子比较硬朗的话,可以查阅原论文了解详细推导过程,本文后面只简要介绍了 ResNet 的分析结果。

ResNet 的主要分析结果

在这一章节中,作者主要会考虑使用梯度下降训练 ResNet 的收敛性,并关注到底需要多大程度的过参数化才能确保梯度下降收敛到全局最优解。当然在这之前需要明确 ResNet 的形式化定义是什么样的。在这篇论文中,作者们主要分析了不同神经网络的经验风险最小化问题,其中损失函数由一般的欧式距离定义:

烧脑!CMU、北大等合著论文真的找到了神经网络的全局最优解

这个式子很容易理解,w 是神经网络所有的权重,x 为输入样本(如图像)、y 为样本的对应标注。在实践中,f(w, x_i) 表示的就是一个完整的残差网络(ResNet),我们希望利用梯度下降一步步调整 ResNet 中的权重w,进而获得经过训练的 ResNet。从形式化上来说,ResNet 或 f(w, x_i) 函数可以表示为如下方程式:

烧脑!CMU、北大等合著论文真的找到了神经网络的全局最优解

其中 x^(1) 表示输入图像 x 经第一个卷积层得出的特征图(feature map),c_σ为初始化阶段中归一化输入的缩放因子,这里并没有详细展示 c_σ的表达式,详情可查看原论文。此外,σ表示一般的激活函数,且作者假设算出来的中间层(x)都是方阵。在 x^(h) 中,作者形式化定义了残差第 h 个残差模块的输出,它会通过残差连接将 h-1 层的输出加上当前层的输出。x^(h) 后面σ左边比较复杂的表达式展示了这一层级的缩放因子,它们具体是什么可以查阅原论文。

最后的 f_res(x, w) 则表示了残差网络的最终表达式,即最后一个残差模块的输出做一个简单的反射变换。因此为了分析 ResNet 的收敛情况,作者定义了总体格莱姆矩阵,即对于所有 (i, j) ∈ [n] × [n],我们有:

烧脑!CMU、北大等合著论文真的找到了神经网络的全局最优解

烧脑!CMU、北大等合著论文真的找到了神经网络的全局最优解

直观上而言,K^(h) 表示了在经过复合 h 次核函数后所得到的格莱姆矩阵(Gram matrix),其中核函数都是由激活函数σ所定义。此外,当权重矩阵的长和宽 m 趋向于无穷大时,它们会渐进格莱姆矩阵。因此作者做了以下假设以决定收敛率和过参数化总量:

烧脑!CMU、北大等合著论文真的找到了神经网络的全局最优解

注意 λ 在这里仅依赖于 K^(0),因此它的定义与全连接网络中的不太一样。一般而言,除非两个数据点是平行的,否则λ通常都是正数。在有了这个假设以后,作者给出了他们对 ResNet 的主要定理:

烧脑!CMU、北大等合著论文真的找到了神经网络的全局最优解

与全连接网络中得出的定理不同,定理 4.1 完全是多项式形式的,因为神经元数量和收敛率都是关于 n 和 H 的多项式,所以作者根据分析结果表明经典多层全连接架构和 ResNet 架构是有显著差别的。作者在这里并没有使用任何指数因子,其主要原因是残差连接块使得整个架构在初始化阶段和训练阶段都更加稳定。

以上只是 ResNet 分析所获得的结果,更多分析和推导过程都在原论文中。作者最后表示过参数化网络上实现的梯度下降能获得零训练损失,且证明的关键技术是表明格莱姆矩阵在过参数化的情况下会越来越稳定,因此下降的每一步都会以几何速率减少损失,并最终收敛到全局最优解。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 我们


推荐阅读
  • 【论文】ICLR 2020 九篇满分论文!!!
    点击上方,选择星标或置顶,每天给你送干货!阅读大概需要11分钟跟随小博主,每天进步一丢丢来自:深度学习技术前沿 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • 本博文基于《Amalgamationofproteinsequence,structureandtextualinformationforimprovingprote ... [详细]
  • 微软头条实习生分享深度学习自学指南
    本文介绍了一位微软头条实习生自学深度学习的经验分享,包括学习资源推荐、重要基础知识的学习要点等。作者强调了学好Python和数学基础的重要性,并提供了一些建议。 ... [详细]
  • 阿里Treebased Deep Match(TDM) 学习笔记及技术发展回顾
    本文介绍了阿里Treebased Deep Match(TDM)的学习笔记,同时回顾了工业界技术发展的几代演进。从基于统计的启发式规则方法到基于内积模型的向量检索方法,再到引入复杂深度学习模型的下一代匹配技术。文章详细解释了基于统计的启发式规则方法和基于内积模型的向量检索方法的原理和应用,并介绍了TDM的背景和优势。最后,文章提到了向量距离和基于向量聚类的索引结构对于加速匹配效率的作用。本文对于理解TDM的学习过程和了解匹配技术的发展具有重要意义。 ... [详细]
  • Google Play推出全新的应用内评价API,帮助开发者获取更多优质用户反馈。用户每天在Google Play上发表数百万条评论,这有助于开发者了解用户喜好和改进需求。开发者可以选择在适当的时间请求用户撰写评论,以获得全面而有用的反馈。全新应用内评价功能让用户无需返回应用详情页面即可发表评论,提升用户体验。 ... [详细]
  • flowable工作流 流程变量_信也科技工作流平台的技术实践
    1背景随着公司业务发展及内部业务流程诉求的增长,目前信息化系统不能够很好满足期望,主要体现如下:目前OA流程引擎无法满足企业特定业务流程需求,且移动端体 ... [详细]
  • Linux如何安装Mongodb的详细步骤和注意事项
    本文介绍了Linux如何安装Mongodb的详细步骤和注意事项,同时介绍了Mongodb的特点和优势。Mongodb是一个开源的数据库,适用于各种规模的企业和各类应用程序。它具有灵活的数据模式和高性能的数据读写操作,能够提高企业的敏捷性和可扩展性。文章还提供了Mongodb的下载安装包地址。 ... [详细]
  • 浏览器中的异常检测算法及其在深度学习中的应用
    本文介绍了在浏览器中进行异常检测的算法,包括统计学方法和机器学习方法,并探讨了异常检测在深度学习中的应用。异常检测在金融领域的信用卡欺诈、企业安全领域的非法入侵、IT运维中的设备维护时间点预测等方面具有广泛的应用。通过使用TensorFlow.js进行异常检测,可以实现对单变量和多变量异常的检测。统计学方法通过估计数据的分布概率来计算数据点的异常概率,而机器学习方法则通过训练数据来建立异常检测模型。 ... [详细]
  • 统一知识图谱学习和建议:更好地理解用户偏好
    本文介绍了一种将知识图谱纳入推荐系统的方法,以提高推荐的准确性和可解释性。与现有方法不同的是,本方法考虑了知识图谱的不完整性,并在知识图谱中传输关系信息,以更好地理解用户的偏好。通过大量实验,验证了本方法在推荐任务和知识图谱完成任务上的优势。 ... [详细]
  • 背景应用安全领域,各类攻击长久以来都危害着互联网上的应用,在web应用安全风险中,各类注入、跨站等攻击仍然占据着较前的位置。WAF(Web应用防火墙)正是为防御和阻断这类攻击而存在 ... [详细]
  • {moduleinfo:{card_count:[{count_phone:1,count:1}],search_count:[{count_phone:4 ... [详细]
  • 在Android开发中,使用Picasso库可以实现对网络图片的等比例缩放。本文介绍了使用Picasso库进行图片缩放的方法,并提供了具体的代码实现。通过获取图片的宽高,计算目标宽度和高度,并创建新图实现等比例缩放。 ... [详细]
  • 本文介绍了PhysioNet网站提供的生理信号处理工具箱WFDB Toolbox for Matlab的安装和使用方法。通过下载并添加到Matlab路径中或直接在Matlab中输入相关内容,即可完成安装。该工具箱提供了一系列函数,可以方便地处理生理信号数据。详细的安装和使用方法可以参考本文内容。 ... [详细]
  • 程序员如何选择机械键盘轴体?红轴和茶轴对比
    本文介绍了程序员如何选择机械键盘轴体,特别是红轴和茶轴的对比。同时还介绍了U盘安装Linux镜像的步骤,以及在Linux系统中安装软件的命令行操作。此外,还介绍了nodejs和npm的安装方法,以及在VSCode中安装和配置常用插件的方法。最后,还介绍了如何在GitHub上配置SSH密钥和git的基本配置。 ... [详细]
author-avatar
brucegogo03
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有