热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

监督学习框架通用处理流程

1、机器学习可以简单地分为监督学习和无监督学习,对于监督学习可以分为分类问题和回归问题。(1)分类:将实例数据划分到合适的分类中。KNN(k-近邻算法)、决策树、朴素贝叶斯、Logistic

1、机器学习可以简单地分为监督学习和无监督学习,对于监督学习可以分为分类问题和回归问题。

(1)分类:将实例数据划分到合适的分类中。
KNN(k-近邻算法)、决策树、朴素贝叶斯、Logistic回归、SVM(支持向量积)。


分类问题示意图

(2)回归:预测数值型数据,包括一元线性回归、多元线性回归、Logistic回归等。


关于这方面的详细介绍可以参见监督学习与无监督学习总结。

2、监督学习通用处理框架

对于监督学习,一般可以通过以下5个步骤来进行处理:

(1)数据采集和预处理;

数据采集及预处理。

(2)模型选择;

模型选择的一些基本思想和方法。

(3)确定代价函数与优化函数;

参考代价函数和代价函数总结。

(4)求解优化问题;

最优化问题简介

机器学习算法调优的一般步骤。

(5)对新的数据进行预测。

这个步骤比较简单,将数值带入模型得出计算结果即可。


参考资料:

统计学习(监督学习)框架总结


推荐阅读
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • Python中HOG图像特征提取与应用
    本文介绍如何在Python中使用HOG(Histogram of Oriented Gradients)算法进行图像特征提取,探讨其在目标检测中的应用,并详细解释实现步骤。 ... [详细]
  • 支持向量机(SVM)是一种基于统计学习理论的模型,主要在VC维和结构风险最小化的理论基础上发展而来。本文将探讨几种不同的SVM方法及其优化策略,旨在提高模型的效率和适用性。 ... [详细]
  • AI炼金术:KNN分类器的构建与应用
    本文介绍了如何使用Python及其相关库(如NumPy、scikit-learn和matplotlib)构建KNN分类器模型。通过详细的数据准备、模型训练及新样本预测的过程,展示KNN算法的实际操作步骤。 ... [详细]
  • 机器学习算法:SVM(支持向量机)
    SVM算法(SupportVectorMachine,支持向量机)的核心思想有2点:1、如果数据线性可分,那么基于最大间隔的方式来确定超平面,以确保全局最优, ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 支持向量机(SVM)在机器学习中的应用与学习心得
    支持向量机(SVM)是一种高效的二分类模型,其核心目标是通过寻找最优超平面来区分不同类别的数据点。在实际应用中,SVM能够有效地处理高维数据,并通过核技巧扩展到非线性分类问题。当新的数据点输入时,SVM会根据其相对于超平面的位置来判定其所属类别。训练过程中,SVM通过最大化间隔来确定最优超平面,从而提高模型的泛化能力。本文总结了SVM在机器学习中的应用及其学习心得,探讨了其在实际问题中的优势和局限性。 ... [详细]
  • 分隔超平面:将数据集分割开来的直线叫做分隔超平面。超平面:如果数据集是N维的,那么就需要N-1维的某对象来对数据进行分割。该对象叫做超平面,也就是分类的决策边界。间隔:一个点 ... [详细]
  • 这是我在复习时整理的笔记,过一遍就稳了,建议还是把PPT过一遍,老师考的都是基础题,大部分都在PPT上,特别是 ... [详细]
  • 概述SVM(支持向量机)是一个二分类的模型,它的主要思想就是间隔最大化,那么问题来了,什么是间隔最大化&#x ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 深入理解K近邻分类算法:机器学习100天系列(26)
    本文详细介绍了K近邻分类算法的理论基础,探讨其工作原理、应用场景以及潜在的局限性。作为机器学习100天系列的一部分,旨在为读者提供全面且深入的理解。 ... [详细]
author-avatar
自由财富大赢家
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有