作者:叶子美容美体养生馆os | 来源:互联网 | 2024-10-23 17:53
分析:
首先判断线段俩直线是否平行(或重合),如果是的话直接求。考虑4个端点到另外一条线段的距离,取最小值即可。
如果不平行或重合,说明俩条直线是异面直线,这时最短距离既可能是某端点到另外一条线段的距离,也可能是异面直线的最短距离。
如何求异面直线的最短距离?假设俩条直线分别为l1=(p1,v1)和l2=(p2,v2),那么最短距离会在某个q1=p1+sv1和q2=p2+tv2上取到,其中q1和q2分别在l1和l2上,且q1q2是这俩条异面直线的公垂线。
向量q1q1=q2-q1=p2-p1+tv2-sv1垂直于V1,因此Dot(p2-p1+tv2-sv1,v1)=0,根据分配率,有Dot(p2-p1,v1)+t*Dot(v2,v1)-s*Dot(v1,v1)=0.注意这里的三个点积都是可以直接算出来的,因此实际上得到的是一个关于t和s的一次方程。根据q1q2垂直于v2还可以得到一个一次方程,联立求解即可。下面的代码直接使用了经过复杂化简以后的结果。
注意本题比较特殊,要求以分数方式输出。所以可以考虑定义一个Rat类(代表Rational)来保存和计算有理数,并且重载加法、减法、和乘法,然后把本题用到的俩个关键函数:点到线段距离Distace2Tosegment和异面直线的最小距离LineDistace3D改写成返回有理数的版本。
代码:
#include
#include
#include
#include
#include
#include
#include
#include