热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

SU(4)Hubbard平均场Python代码

标准的SU(N)共线磁序平均场计算,存在很强简并性。importnumpyasnpfromnumpyimportexp,pi,sqrtf

标准的SU(N)共线磁序平均场计算,存在很强简并性。

import numpy as np
from numpy import exp, pi, sqrt
from numpy.linalg import eigh
import matplotlib.pylab as plt
from numba import njit
def H0_SU4(H, k, t = 1):
A = t * np.array([[sqrt(3),0,1,exp(-1j*k)],[0, sqrt(3),1,1],[1,1,sqrt(3),0],[exp(1j*k),1,0,sqrt(3)]])
B = t * np.array([[0,0,0,0],[0,0,0,0],[1,0,0,0],[0,-1,0,0]])
return tridiag_block_matrix(H, A, B.T, B)
@njit
def Fermi(E, mu, T):
return 1/(np.exp((E - mu)/T) + 1)
@njit
def tridiag_block_matrix(H, c, u, d):
# c, u, d are center, upper and lower blocks
N, _ = H.shape
n, _ = c.shape
H[0:n, 0:n] = c
for i in range(n, N, n):
H[i:i+n, i:i+n] = c
H[i-n:i, i:i+n] = d
H[i:i+n, i-n:i] = u
return H
# Hatree_Fork 自洽计算过程
def Hatree_Fock(H, ks, N1avg, N2avg, N3avg, N4avg, U, T = 0.005, mu = 0, ncc = 20):
m, _ = N1avg.shape
nk = ks.size
band1 = np.zeros((nk, m))
band2 = np.zeros((nk, m))
band3 = np.zeros((nk, m))
band4 = np.zeros((nk, m))
for ic in range(ncc):
N1avg_tmp = np.zeros((m,m), dtype='double')
N2avg_tmp = np.zeros((m,m), dtype='double')
N3avg_tmp = np.zeros((m,m), dtype='double')
N4avg_tmp = np.zeros((m,m), dtype='double')
m1avg = (N1avg - N2avg)/2
m2avg = (N1avg+N2avg-2*N3avg)/(2*sqrt(3))
m3avg = (N1avg+N2avg+N3avg-3*N4avg)/(2*sqrt(6))
C = 8/5*U*(m1avg*m1avg +m2avg*m2avg + m3avg*m3avg)
U1 = U * (m1avg/2+m2avg/(2*sqrt(3)) + m3avg/(2*sqrt(6)))
U2 = U * (-m1avg/2+m2avg/(2*sqrt(3))+ m3avg/(2*sqrt(6)))
U3 = U * (-2*m2avg/(2*sqrt(3)) + m3avg/(2*sqrt(6)))
U4 = U * (-3*m3avg/(2*sqrt(6)))
for i in range(nk):
H0 = H0_SU4(H, ks[i])
Hk0 = H0[1:,1:]
Ek1, Ak1 = eigh(Hk0 - 16/5 * U1 + C)
Ek2, Ak2 = eigh(Hk0 - 16/5 * U2 + C)
Ek3, Ak3 = eigh(Hk0 - 16/5 * U3 + C)
Ek4, Ak4 = eigh(Hk0 - 16/5 * U4 + C)
if ic == ncc - 1:
band1[i, :] = Ek1
band2[i, :] = Ek2
band3[i, :] = Ek3
band4[i, :] = Ek4
Fermi1 = Fermi(Ek1,mu,T).reshape(1,m)
Fermi2 = Fermi(Ek2,mu,T).reshape(1,m)
Fermi3 = Fermi(Ek3,mu,T).reshape(1,m)
Fermi4 = Fermi(Ek4,mu,T).reshape(1,m)
Nk1 = (np.abs(Ak1)*np.abs(Ak1)*Fermi1).sum(axis=1,dtype='double')
Nk2 = (np.abs(Ak2)*np.abs(Ak2)*Fermi2).sum(axis=1,dtype='double')
Nk3 = (np.abs(Ak3)*np.abs(Ak3)*Fermi3).sum(axis=1,dtype='double')
Nk4 = (np.abs(Ak4)*np.abs(Ak4)*Fermi4).sum(axis=1,dtype='double')
N1avg_tmp += np.diag(Nk1)
N2avg_tmp += np.diag(Nk2)
N3avg_tmp += np.diag(Nk3)
N4avg_tmp += np.diag(Nk4)
N1avg = N1avg_tmp/nk
N2avg = N2avg_tmp/nk
N3avg = N3avg_tmp/nk
N4avg = N4avg_tmp/nk

if ic % 5==0:
print(f"已经完成{ic}次迭代")

return band1, band2, band3, band4, N1avg, N2avg, N3avg, N4avg
def plot_band():
N = 256
m = 4 * N
nk = 128
U = 0.2
ks = np.linspace(0, 2*pi, nk)
H = np.zeros((m, m), dtype=np.complex64)
N1avg = 0.25 * np.eye(m - 1)
N2avg = 0.25 * np.eye(m - 1)
N3avg = 0.25 * np.eye(m - 1)
N4avg = 0.25 * np.eye(m - 1)
N1avg[0, 0] = 0.3
N2avg[0, 0] = 0.3
N3avg[0, 0] = 0.3
N4avg[0, 0] = 0.1
band1, band2, band3, band4, N1avg, N2avg, N3avg, N4avg = Hatree_Fock(H, ks, N1avg, N2avg, N3avg, N4avg, U)
plt.plot(band1, color = "gray")
plt.plot(band2, color = "gray")
plt.plot(band3, color = "gray")
plt.plot(band4, color = "gray")
plt.plot(band1[:, N - 1], color = "red")
plt.plot(band2[:, N - 1], color = "red")
plt.plot(band3[:, N - 1], color = "red")
plt.plot(band4[:, N - 1], color = "blue")
plt.xticks(np.arange(0, nk, nk//3), ['0', '2/3π', '4/3π', '2π'], fOntsize= 12, fOntweight= 'bold')
plt.yticks(np.arange(-0.5, 0.6, 0.5), fOntsize= 12, fOntweight= 'bold')
plt.ylim(-0.5, 0.5)
plt.xlabel("k", fOntsize= 13, fOntweight= 'bold')
plt.ylabel("E", fOntsize= 13, fOntweight= 'bold')
plt.show()
plt.plot(np.diag(N1avg))
plt.plot(np.diag(N2avg))
plt.plot(np.diag(N3avg))
plt.plot(np.diag(N4avg))
plt.show()
if __name__ == '__main__':
N = 32
m = 4 * N
nk = 128
U = 0.2
ks = np.linspace(0, 2*pi, nk)
H = np.zeros((m, m), dtype=np.complex64)
N1avg = 0.25 * np.eye(m - 1)
N2avg = 0.25 * np.eye(m - 1)
N3avg = 0.25 * np.eye(m - 1)
N4avg = 0.25 * np.eye(m - 1)
N1avg[0, 0] = 0.3
N2avg[0, 0] = 0.3
N3avg[0, 0] = 0.3
N4avg[0, 0] = 0.1
band1, band2, band3, band4, N1avg, N2avg, N3avg, N4avg = Hatree_Fock(H, ks, N1avg, N2avg, N3avg, N4avg, U)
np.save("./band1.npy", band1)
np.save("./band2.npy", band2)
np.save("./band3.npy", band3)
np.save("./band4.npy", band4)
np.save("./N1avg", N1avg)
np.save("./N2avg", N2avg)
np.save("./N3avg", N3avg)
np.save("./N4avg", N4avg)


版权声明:本文为wwxy1995原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/wwxy1995/article/details/121463153
推荐阅读
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 本文详细介绍了Akka中的BackoffSupervisor机制,探讨其在处理持久化失败和Actor重启时的应用。通过具体示例,展示了如何配置和使用BackoffSupervisor以实现更细粒度的异常处理。 ... [详细]
  • 本文详细介绍了 Dockerfile 的编写方法及其在网络配置中的应用,涵盖基础指令、镜像构建与发布流程,并深入探讨了 Docker 的默认网络、容器互联及自定义网络的实现。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • Python 异步编程:深入理解 asyncio 库(上)
    本文介绍了 Python 3.4 版本引入的标准库 asyncio,该库为异步 IO 提供了强大的支持。我们将探讨为什么需要 asyncio,以及它如何简化并发编程的复杂性,并详细介绍其核心概念和使用方法。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 本文介绍如何使用Objective-C结合dispatch库进行并发编程,以提高素数计数任务的效率。通过对比纯C代码与引入并发机制后的代码,展示dispatch库的强大功能。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 将Web服务部署到Tomcat
    本文介绍了如何在JDeveloper 12c中创建一个Java项目,并将其打包为Web服务,然后部署到Tomcat服务器。内容涵盖从项目创建、编写Web服务代码、配置相关XML文件到最终的本地部署和验证。 ... [详细]
  • 本文介绍了如何在C#中启动一个应用程序,并通过枚举窗口来获取其主窗口句柄。当使用Process类启动程序时,我们通常只能获得进程的句柄,而主窗口句柄可能为0。因此,我们需要使用API函数和回调机制来准确获取主窗口句柄。 ... [详细]
  • 本文详细解析了Python中的os和sys模块,介绍了它们的功能、常用方法及其在实际编程中的应用。 ... [详细]
  • MySQL索引详解与优化
    本文深入探讨了MySQL中的索引机制,包括索引的基本概念、优势与劣势、分类及其实现原理,并详细介绍了索引的使用场景和优化技巧。通过具体示例,帮助读者更好地理解和应用索引以提升数据库性能。 ... [详细]
author-avatar
WingKeii-
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有