热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

SU(4)Hubbard平均场Python代码

标准的SU(N)共线磁序平均场计算,存在很强简并性。importnumpyasnpfromnumpyimportexp,pi,sqrtf

标准的SU(N)共线磁序平均场计算,存在很强简并性。

import numpy as np
from numpy import exp, pi, sqrt
from numpy.linalg import eigh
import matplotlib.pylab as plt
from numba import njit
def H0_SU4(H, k, t = 1):
A = t * np.array([[sqrt(3),0,1,exp(-1j*k)],[0, sqrt(3),1,1],[1,1,sqrt(3),0],[exp(1j*k),1,0,sqrt(3)]])
B = t * np.array([[0,0,0,0],[0,0,0,0],[1,0,0,0],[0,-1,0,0]])
return tridiag_block_matrix(H, A, B.T, B)
@njit
def Fermi(E, mu, T):
return 1/(np.exp((E - mu)/T) + 1)
@njit
def tridiag_block_matrix(H, c, u, d):
# c, u, d are center, upper and lower blocks
N, _ = H.shape
n, _ = c.shape
H[0:n, 0:n] = c
for i in range(n, N, n):
H[i:i+n, i:i+n] = c
H[i-n:i, i:i+n] = d
H[i:i+n, i-n:i] = u
return H
# Hatree_Fork 自洽计算过程
def Hatree_Fock(H, ks, N1avg, N2avg, N3avg, N4avg, U, T = 0.005, mu = 0, ncc = 20):
m, _ = N1avg.shape
nk = ks.size
band1 = np.zeros((nk, m))
band2 = np.zeros((nk, m))
band3 = np.zeros((nk, m))
band4 = np.zeros((nk, m))
for ic in range(ncc):
N1avg_tmp = np.zeros((m,m), dtype='double')
N2avg_tmp = np.zeros((m,m), dtype='double')
N3avg_tmp = np.zeros((m,m), dtype='double')
N4avg_tmp = np.zeros((m,m), dtype='double')
m1avg = (N1avg - N2avg)/2
m2avg = (N1avg+N2avg-2*N3avg)/(2*sqrt(3))
m3avg = (N1avg+N2avg+N3avg-3*N4avg)/(2*sqrt(6))
C = 8/5*U*(m1avg*m1avg +m2avg*m2avg + m3avg*m3avg)
U1 = U * (m1avg/2+m2avg/(2*sqrt(3)) + m3avg/(2*sqrt(6)))
U2 = U * (-m1avg/2+m2avg/(2*sqrt(3))+ m3avg/(2*sqrt(6)))
U3 = U * (-2*m2avg/(2*sqrt(3)) + m3avg/(2*sqrt(6)))
U4 = U * (-3*m3avg/(2*sqrt(6)))
for i in range(nk):
H0 = H0_SU4(H, ks[i])
Hk0 = H0[1:,1:]
Ek1, Ak1 = eigh(Hk0 - 16/5 * U1 + C)
Ek2, Ak2 = eigh(Hk0 - 16/5 * U2 + C)
Ek3, Ak3 = eigh(Hk0 - 16/5 * U3 + C)
Ek4, Ak4 = eigh(Hk0 - 16/5 * U4 + C)
if ic == ncc - 1:
band1[i, :] = Ek1
band2[i, :] = Ek2
band3[i, :] = Ek3
band4[i, :] = Ek4
Fermi1 = Fermi(Ek1,mu,T).reshape(1,m)
Fermi2 = Fermi(Ek2,mu,T).reshape(1,m)
Fermi3 = Fermi(Ek3,mu,T).reshape(1,m)
Fermi4 = Fermi(Ek4,mu,T).reshape(1,m)
Nk1 = (np.abs(Ak1)*np.abs(Ak1)*Fermi1).sum(axis=1,dtype='double')
Nk2 = (np.abs(Ak2)*np.abs(Ak2)*Fermi2).sum(axis=1,dtype='double')
Nk3 = (np.abs(Ak3)*np.abs(Ak3)*Fermi3).sum(axis=1,dtype='double')
Nk4 = (np.abs(Ak4)*np.abs(Ak4)*Fermi4).sum(axis=1,dtype='double')
N1avg_tmp += np.diag(Nk1)
N2avg_tmp += np.diag(Nk2)
N3avg_tmp += np.diag(Nk3)
N4avg_tmp += np.diag(Nk4)
N1avg = N1avg_tmp/nk
N2avg = N2avg_tmp/nk
N3avg = N3avg_tmp/nk
N4avg = N4avg_tmp/nk

if ic % 5==0:
print(f"已经完成{ic}次迭代")

return band1, band2, band3, band4, N1avg, N2avg, N3avg, N4avg
def plot_band():
N = 256
m = 4 * N
nk = 128
U = 0.2
ks = np.linspace(0, 2*pi, nk)
H = np.zeros((m, m), dtype=np.complex64)
N1avg = 0.25 * np.eye(m - 1)
N2avg = 0.25 * np.eye(m - 1)
N3avg = 0.25 * np.eye(m - 1)
N4avg = 0.25 * np.eye(m - 1)
N1avg[0, 0] = 0.3
N2avg[0, 0] = 0.3
N3avg[0, 0] = 0.3
N4avg[0, 0] = 0.1
band1, band2, band3, band4, N1avg, N2avg, N3avg, N4avg = Hatree_Fock(H, ks, N1avg, N2avg, N3avg, N4avg, U)
plt.plot(band1, color = "gray")
plt.plot(band2, color = "gray")
plt.plot(band3, color = "gray")
plt.plot(band4, color = "gray")
plt.plot(band1[:, N - 1], color = "red")
plt.plot(band2[:, N - 1], color = "red")
plt.plot(band3[:, N - 1], color = "red")
plt.plot(band4[:, N - 1], color = "blue")
plt.xticks(np.arange(0, nk, nk//3), ['0', '2/3π', '4/3π', '2π'], fOntsize= 12, fOntweight= 'bold')
plt.yticks(np.arange(-0.5, 0.6, 0.5), fOntsize= 12, fOntweight= 'bold')
plt.ylim(-0.5, 0.5)
plt.xlabel("k", fOntsize= 13, fOntweight= 'bold')
plt.ylabel("E", fOntsize= 13, fOntweight= 'bold')
plt.show()
plt.plot(np.diag(N1avg))
plt.plot(np.diag(N2avg))
plt.plot(np.diag(N3avg))
plt.plot(np.diag(N4avg))
plt.show()
if __name__ == '__main__':
N = 32
m = 4 * N
nk = 128
U = 0.2
ks = np.linspace(0, 2*pi, nk)
H = np.zeros((m, m), dtype=np.complex64)
N1avg = 0.25 * np.eye(m - 1)
N2avg = 0.25 * np.eye(m - 1)
N3avg = 0.25 * np.eye(m - 1)
N4avg = 0.25 * np.eye(m - 1)
N1avg[0, 0] = 0.3
N2avg[0, 0] = 0.3
N3avg[0, 0] = 0.3
N4avg[0, 0] = 0.1
band1, band2, band3, band4, N1avg, N2avg, N3avg, N4avg = Hatree_Fock(H, ks, N1avg, N2avg, N3avg, N4avg, U)
np.save("./band1.npy", band1)
np.save("./band2.npy", band2)
np.save("./band3.npy", band3)
np.save("./band4.npy", band4)
np.save("./N1avg", N1avg)
np.save("./N2avg", N2avg)
np.save("./N3avg", N3avg)
np.save("./N4avg", N4avg)


版权声明:本文为wwxy1995原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/wwxy1995/article/details/121463153
推荐阅读
  • 关于进程的复习:#管道#数据的共享Managerdictlist#进程池#cpu个数1#retmap(func,iterable)#异步自带close和join#所有 ... [详细]
  • pypy 真的能让 Python 比 C 还快么?
    作者:肖恩顿来源:游戏不存在最近“pypy为什么能让python比c还快”刷屏了,原文讲的内容偏理论,干货比较少。我们可以再深入一点点,了解pypy的真相。正式开始之前,多唠叨两句 ... [详细]
  • 所在位置|室友_Python+OpenCv实现图像边缘检测(滑动调节阈值)
    所在位置|室友_Python+OpenCv实现图像边缘检测(滑动调节阈值) ... [详细]
  • 本文详细记录了 MIT 6.824 课程中 MapReduce 实验的开发过程,包括环境搭建、实验步骤和具体实现方法。 ... [详细]
  • 本文介绍了如何在Android应用中通过Intent调用其他应用的Activity,并提供了详细的代码示例和注意事项。 ... [详细]
  • GreenPlum采纳ShareNothing的架构,良好的施展了便宜PC的作用。自此IO不在是DW(datawarehouse)的瓶颈,相同网络的压力会大很多。然而GreenPlum的查问优化策略可能防止尽量少的网络替换。对于首次接触GreenPlum的人来说,必定耳目一新。 ... [详细]
  • 本文通过一个具体的案例,展示了如何使用 Python 爬虫技术从京东网站爬取手机的价格和参数。最近发布的 iPhone X 虽然价格昂贵,但不妨碍我们探索其他高性价比的国产手机。 ... [详细]
  • 使用Tkinter构建51Ape无损音乐爬虫UI
    本文介绍了如何使用Python的内置模块Tkinter来构建一个简单的用户界面,用于爬取51Ape网站上的无损音乐百度云链接。虽然Tkinter入门相对简单,但在实际开发过程中由于文档不足可能会带来一些不便。 ... [详细]
  • JUC并发编程——线程的基本方法使用
    目录一、线程名称设置和获取二、线程的sleep()三、线程的interrupt四、join()五、yield()六、wait(),notify(),notifyAll( ... [详细]
  • 本文详细介绍了HashSet类,它是Set接口的一个实现,底层使用哈希表(实际上是HashMap实例)。HashSet不保证元素的迭代顺序,并且是非线程安全的。 ... [详细]
  • 本文详细介绍了如何在Android应用中实现重复报警功能。示例代码可在以下路径找到:https://developer.android.com/samples/RepeatingAlarm/index.html。首先,我们将从Manifest文件开始分析。 ... [详细]
  • 我自己做了一个网站图片的抓取,感觉速度有点慢抓取4000张图片可能得用15分钟左右的时间,我百度看用线程可以加快抓取,然后创建了5个线程抓取,但是5个线程是同步执行同样的操作一个图片就 ... [详细]
  • QSplitter 使用详解
    阅读《C++ GUI Programming with Qt 4, 2nd Edition》第六章布局管理器中的第三节关于 Splitters 的内容,并尝试实现书中的示例,发现实际效果与书中描述存在差异,尤其是分界线部分。 ... [详细]
  • 在运行于MS SQL Server 2005的.NET 2.0 Web应用中,我偶尔会遇到令人头疼的SQL死锁问题。过去,我们主要通过调整查询来解决这些问题,但这既耗时又不可靠。我希望能找到一种确定性的查询模式,确保从设计上彻底避免SQL死锁。 ... [详细]
  • 本文详细介绍了Go语言中的数组,包括其基本概念、声明方式、初始化方法以及常见操作。 ... [详细]
author-avatar
WingKeii-
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有