热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

如何用Python将熊猫DataFrame转换成JSON?

如何用Python将熊猫DataFrame转换成JSON?

如何用 Python 将熊猫 DataFrame 转换成 JSON?

原文:https://www . geesforgeks . org/如何将 pandas-data frame-in-JSON-in-python/

数据分析是当今世界极其重要的工具。数据分析的一个关键方面是数据的有组织的表示。在计算机科学中有许多数据结构来实现这一任务。在本文中,我们将讨论两种这样的数据结构,即。熊猫数据框JSON 。此外,我们还将看到如何将数据帧转换为 JSON 格式。

熊猫数据帧是数据的表格表示,其中列表示单个数据条目中的不同数据点,每行是唯一的数据条目。而 JSON 是用 Javascript 对象符号编写的文本。

注:更多信息请参考 Python |熊猫数据框

将熊猫数据帧转换为 JSON

要将熊猫数据帧转换为 JSON 格式,我们使用 Python 中熊猫库的函数DataFrame.to_json()。to_json 函数中有多种定制,可以实现所需的 json 格式。让我们看看函数接受的参数,然后探索定制

参数:


































































参数价值使用
path_or_buf字符串或文件名,可选文件路径或对象。如果未指定,结果将作为字符串返回。
东方拆分','记录','索引','列','值','表',默认值= '索引'预期 JSON 字符串格式的指示。
日期格式无,“纪元”,“iso”,默认值=“纪元”日期转换的类型。epoch' = epoch 毫秒,' iso' = ISO8601。默认值取决于方向。对于 orient='table ',默认值为' iso '。对于所有其他方向,默认为“纪元”。
双精度整数值,默认值=10对浮点值进行编码时使用的小数位数。
力量 _ascii布尔值,默认值=真强制编码字符串为 ASCII。
日期单位s ',' ms ',' us ',' ns ',默认值='ms '要编码到的时间单位,控制时间戳和 ISO8601 精度。这些值分别代表秒、毫秒、微秒和纳秒。
默认处理程序可调用函数如果对象不能转换为适合 JSON 的格式,则调用处理程序。应该接收单个参数,该参数是要转换并返回可序列化对象的对象。
线布尔值,默认值=假如果“orient”是“records ”,写出以行分隔的 json 格式。如果“方向”不正确,将抛出 ValueError,因为其他值不像列表。
压缩推断',' gzip ',' bz2 ',' zip ',' xz ',无,默认= '推断'一个字符串,表示要在输出文件中使用的压缩,仅当第一个参数是文件名时使用。默认情况下,压缩是从文件名推断出来的。
指数布尔值,默认值=真是否在 JSON 字符串中包含索引值。仅当方向为“拆分”或“表”时,才支持不包括索引(索引=假)。
缩进整数值用于缩进每条记录的空白长度。可选参数无需提及。

我们现在看几个例子来理解函数 DataFrame.to_json 的用法。

例 1: 基本用法

import numpy as np
import pandas as pd
data = np.array([['1', '2'], ['3', '4']])
dataFrame = pd.DataFrame(data, columns = ['col1', 'col2'])
json = dataFrame.to_json()
print(json)

输出:

{"col1":{"0":"1", "1":"3"}, "col2":{"0":"2", "1":"4"}}

例 2: 探索 DataFrame.to_json 函数的‘orient’属性

import numpy as np
import pandas as pd
data = np.array([['1', '2'], ['3', '4']])
dataFrame = pd.DataFrame(data, columns = ['col1', 'col2'])
json = dataFrame.to_json()
print(json)
json_split = dataFrame.to_json(orient ='split')
print("json_split = ", json_split, "\n")
json_records = dataFrame.to_json(orient ='records')
print("json_records = ", json_records, "\n")
json_index = dataFrame.to_json(orient ='index')
print("json_index = ", json_index, "\n")
json_columns = dataFrame.to_json(orient ='columns')
print("json_columns = ", json_columns, "\n")
json_values = dataFrame.to_json(orient ='values')
print("json_values = ", json_values, "\n")
json_table = dataFrame.to_json(orient ='table')
print("json_table = ", json_table, "\n")

输出:

json_split = {"columns":["col1 "," col2"]," index":[0,1]," data ":[" 1 "," 2"],["3 "," 4 "]}

JSON _ records =[{ " col 1 "" 1 "、" col 2 "" 2 " }、{ " col 1 "" 3 "、" col 2 "" 4 " }]

JSON _ index = { " 0 ":{ " col 1 "" 1 "、" col 2 "" 2 " }、" 1 ":{ " col 1 "" 3 "、" col 2 "" 4 " } }

JSON _ columns = { " col 1 ":{ " 0 ":" 1 "、" 1 ":" 3 " }、" col 2 ":{ " 0 ":" 2 "、" 1 ":" 4 " } }

json_values = [["1 "," 2"],["3 "," 4"]]

JSON _ table = { " schema ":{ " fields ":[{ " name ":" index "、" type":"integer"}、{"name":"col1 "、" type":"string"}、{"name":"col2 "、" type":"string"}]、" primaryKey":["index"]、" pandas _ version ":" 0 . 20 . 0 " }、" data":[{"index":0 "、" col 1 ":" 1 "、" col 2 ":" 2 " }、{ "


推荐阅读
  • 本指南从零开始介绍Scala编程语言的基础知识,重点讲解了Scala解释器REPL(读取-求值-打印-循环)的使用方法。REPL是Scala开发中的重要工具,能够帮助初学者快速理解和实践Scala的基本语法和特性。通过详细的示例和练习,读者将能够熟练掌握Scala的基础概念和编程技巧。 ... [详细]
  • 在过去,我曾使用过自建MySQL服务器中的MyISAM和InnoDB存储引擎(也曾尝试过Memory引擎)。今年初,我开始转向阿里云的关系型数据库服务,并深入研究了其高效的压缩存储引擎TokuDB。TokuDB在数据压缩和处理大规模数据集方面表现出色,显著提升了存储效率和查询性能。通过实际应用,我发现TokuDB不仅能够有效减少存储成本,还能显著提高数据处理速度,特别适用于高并发和大数据量的场景。 ... [详细]
  • 本文总结了Java初学者需要掌握的六大核心知识点,帮助你更好地理解和应用Java编程。无论你是刚刚入门还是希望巩固基础,这些知识点都是必不可少的。 ... [详细]
  • 浅析python实现布隆过滤器及Redis中的缓存穿透原理_python
    本文带你了解了位图的实现,布隆过滤器的原理及Python中的使用,以及布隆过滤器如何应对Redis中的缓存穿透,相信你对布隆过滤 ... [详细]
  • MySQL 5.7 学习指南:SQLyog 中的主键、列属性和数据类型
    本文介绍了 MySQL 5.7 中主键(Primary Key)和自增(Auto-Increment)的概念,以及如何在 SQLyog 中设置这些属性。同时,还探讨了数据类型的分类和选择,以及列属性的设置方法。 ... [详细]
  • 深入剖析Java中SimpleDateFormat在多线程环境下的潜在风险与解决方案
    深入剖析Java中SimpleDateFormat在多线程环境下的潜在风险与解决方案 ... [详细]
  • 在Android应用开发中,实现与MySQL数据库的连接是一项重要的技术任务。本文详细介绍了Android连接MySQL数据库的操作流程和技术要点。首先,Android平台提供了SQLiteOpenHelper类作为数据库辅助工具,用于创建或打开数据库。开发者可以通过继承并扩展该类,实现对数据库的初始化和版本管理。此外,文章还探讨了使用第三方库如Retrofit或Volley进行网络请求,以及如何通过JSON格式交换数据,确保与MySQL服务器的高效通信。 ... [详细]
  • Android中将独立SO库封装进JAR包并实现SO库的加载与调用
    在Android开发中,将独立的SO库封装进JAR包并实现其加载与调用是一个常见的需求。本文详细介绍了如何将SO库嵌入到JAR包中,并确保在外部应用调用该JAR包时能够正确加载和使用这些SO库。通过这种方式,开发者可以更方便地管理和分发包含原生代码的库文件,提高开发效率和代码复用性。文章还探讨了常见的问题及其解决方案,帮助开发者避免在实际应用中遇到的坑。 ... [详细]
  • 本文探讨了利用Python实现高效语音识别技术的方法。通过使用先进的语音处理库和算法,本文详细介绍了如何构建一个准确且高效的语音识别系统。提供的代码示例和实验结果展示了该方法在实际应用中的优越性能。相关文件可从以下链接下载:链接:https://pan.baidu.com/s/1RWNVHuXMQleOrEi5vig_bQ,提取码:p57s。 ... [详细]
  • Netty框架中运用Protobuf实现高效通信协议
    在Netty框架中,通过引入Protobuf来实现高效的通信协议。为了使用Protobuf,需要先准备好环境,包括下载并安装Protobuf的代码生成器`protoc`以及相应的源码包。具体资源可从官方下载页面获取,确保版本兼容性以充分发挥其性能优势。此外,配置好开发环境后,可以通过定义`.proto`文件来自动生成Java类,从而简化数据序列化和反序列化的操作,提高通信效率。 ... [详细]
  • 在处理遗留数据库的映射时,反向工程是一个重要的初始步骤。由于实体模式已经在数据库系统中存在,Hibernate 提供了自动化工具来简化这一过程,帮助开发人员快速生成持久化类和映射文件。通过反向工程,可以显著提高开发效率并减少手动配置的错误。此外,该工具还支持对现有数据库结构进行分析,自动生成符合 Hibernate 规范的配置文件,从而加速项目的启动和开发周期。 ... [详细]
  • Spring框架中的面向切面编程(AOP)技术详解
    面向切面编程(AOP)是Spring框架中的关键技术之一,它通过将横切关注点从业务逻辑中分离出来,实现了代码的模块化和重用。AOP的核心思想是将程序运行过程中需要多次处理的功能(如日志记录、事务管理等)封装成独立的模块,即切面,并在特定的连接点(如方法调用)动态地应用这些切面。这种方式不仅提高了代码的可维护性和可读性,还简化了业务逻辑的实现。Spring AOP利用代理机制,在不修改原有代码的基础上,实现了对目标对象的增强。 ... [详细]
  • 在《Python编程基础》课程中,我们将深入探讨Python中的循环结构。通过详细解析for循环和while循环的语法与应用场景,帮助初学者掌握循环控制语句的核心概念和实际应用技巧。此外,还将介绍如何利用循环结构解决复杂问题,提高编程效率和代码可读性。 ... [详细]
  • 技术分享:深入解析GestureDetector手势识别机制
    技术分享:深入解析GestureDetector手势识别机制 ... [详细]
  • 在Python中,通过实现一个便捷的函数来解码Base64编码的数据,并将其转换为数组形式。该函数能够将Base64字符串解码为字节数组,便于进一步处理。例如,可以使用如下代码片段进行解码:`base64_decode_array('6gAAAOsAAAD')`。这为处理二进制数据提供了高效且简洁的方法。 ... [详细]
author-avatar
长发及腰和我娶你D有毛关系
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有