热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

如何判定一个数是否为2的N次方

给定一个整数num,判断这个整数是否是2的N次方。比如,2,4,8是2的那次方,6,10不是2的N次方。因此我觉得,最保险的还是位运算,看多少个1,来的最实在。当然这里存在一个负数的问题。第一位是1,剩下全是0的问题。不过有一位聪明的回复者提供了一个很强大的方法来避开负数的用例:他给参数定的类型是uint!

题目:给定一个整数num,判断这个整数是否是2的N次方。比如,2,4,8是2的那次方,6,10不是2的N次方。

请看下面的程序:

public static bool Check1(int num)
{
    int i = 1;
    while (true)
    {
        if (i > num)
            return false;
        if (i == num)
            return true;
        i = i * 2;
    }
}

不断的循环num%2,如果不等于0,return false,如果等于0,num=num/2,一直做到num=1

public static bool Check2(int num)
{
    if (num == 1)
        return true;
    else
    {
        do
        {
            if (num % 2 == 0)
                num = num / 2;
            else
                return false;
        }
        while (num != 1);
        return true;
    }
}

其实这两种算法的思路都是相同的,但是第二种相对第一种更高效写,因为如果不是2的N次方,可以少循环很多次!

由于2的N次方的数二进制表示是第1位为1,其余为0,而x-1(假如x为2的N次方)得到的数的二进制表示恰恰是第1位为0,其余为1,两者相与,得到的结果就为0,否则结果肯定不为0。

public static boolean getResult(int num) 
{ 
	if (num <= 1) 
    { 
		return false; 
	} 
    else 
    { 
		return ((num & (num - 1)) == 0) ? true : false; 
	} 
} 
public static void main(String[] args) { 
	System.out.println(getResult(32)); 
} 

上面的程序多判断了一个1. 我们知道, 1是2的0次方。 1应该是符合要求的。下面修正:

	public static bool floor_7(int num)
    {
        if (num <= 1)
        {
            return false;
        }
        else
        {
            return ((num & (num - 1)) == 0) ? true : false;
        }
    }

如果一个数是2的整数次幂,那么表示为二进制的时候会是这样:010000....

除了2的零次方,即1之外,这个数减一会得到:001111....

换言之得到一个前面全是0后面全是1的数,把这个数和原数做个按位与,得到:000000.....

换言之,如果一个数n,其不为1,且n-1 & n = 0,那么n就是一个2的整数次幂。因为只要他表达为二进制时存在两个1,就不会满足这条规律。所以最简判断方法就是:

if ( n <0 )
throw new InvalidOperationException();
if ( n <2 )
return false;
return n & ( n - 1 ) == 0

修正之后:

	public bool floor_8(int n)
    {
        if (n <0)
            throw new InvalidOperationException();
        if (n <2)
            return false;
        return n & (n - 1) == 0;
    }

对数算法:

bool foo(int x)
{
    float ret = log(x)/log(2); 
    return abs((int) ret - ret) <= 0.00001;
}

修正后:

	public bool floor_22(int x)
    {
        float ret = log(x) / log(2);
        return abs((int)ret - ret) <= 0.00001;
    }

对数算法比较有趣, 可惜, 浮点误差毕竟不是个容易避开的问题。因为浮点数不能直接比较, 所以用了一个0.00001来做尺度。这就存在了一个问题:当x很大的时候呢?我找了一个变态的数字来测试:0x10000001

结果是true。因为结果的小数部分实在是太小了。

static void Main(string[] args)
{
	int i = int.Parse(Console.ReadLine());
	Console.WriteLine(IsCheck(i));
}
public static bool IsCheck(int num)
{
	double result = Math.Log(num, 2);
	if (result.ToString().IndexOf(".") >= 0)
	{
		return false;
	}
	else
	{
		return true;
	}
}

相同的问题。 只要使用了LOG, 就无法避免掉浮点数丢精度的问题。 这是没办法的事情。

	public static bool floor_37(int num)
    {
        double result = Math.Log(num, 2);
        if (result.ToString().IndexOf(".") >= 0)
        {
            return false;
        }
        else
        {
            return true;
        }
    }

所以总结了下, (x)&(x-1)的算法还没有被证明, 不知道除了0还有没有别的反例。因为毕竟这个算式没有严密的证明过程。

因此我觉得, 最保险的还是位运算, 看多少个1, 来的最实在。当然这里存在一个负数的问题。第一位是1, 剩下全是0的问题。 不过有一位聪明的回复者提供了一个很强大的方法来避开负数的用例:他给参数定的类型是uint!

好吧你赢了。

本文地址:http://www.nowamagic.net/librarys/veda/detail/1031,欢迎访问原出处。


推荐阅读
  • 非公版RTX 3080显卡的革新与亮点
    本文深入探讨了图形显卡的进化历程,重点介绍了非公版RTX 3080显卡的技术特点和创新设计。 ... [详细]
  • 深入理解OAuth认证机制
    本文介绍了OAuth认证协议的核心概念及其工作原理。OAuth是一种开放标准,旨在为第三方应用提供安全的用户资源访问授权,同时确保用户的账户信息(如用户名和密码)不会暴露给第三方。 ... [详细]
  • 本文探讨了Hive中内部表和外部表的区别及其在HDFS上的路径映射,详细解释了两者的创建、加载及删除操作,并提供了查看表详细信息的方法。通过对比这两种表类型,帮助读者理解如何更好地管理和保护数据。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 本文介绍如何利用动态规划算法解决经典的0-1背包问题。通过具体实例和代码实现,详细解释了在给定容量的背包中选择若干物品以最大化总价值的过程。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 探讨一个显示数字的故障计算器,它支持两种操作:将当前数字乘以2或减去1。本文将详细介绍如何用最少的操作次数将初始值X转换为目标值Y。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文探讨如何设计一个安全的加密和验证算法,确保生成的密码具有高随机性和低重复率,并提供相应的验证机制。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 在金融和会计领域,准确无误地填写票据和结算凭证至关重要。这些文件不仅是支付结算和现金收付的重要依据,还直接关系到交易的安全性和准确性。本文介绍了一种使用C语言实现小写金额转换为大写金额的方法,确保数据的标准化和规范化。 ... [详细]
author-avatar
沉稳之固_300
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有