热门标签 | HotTags
当前位置:  开发笔记 > 大数据 > 正文

如何以低成本高效构建Hadoop和Spark大数据处理环境

随着“大数据”价值的日益凸显,从互联网、电商到金融和政府机构等各个领域都在积极应对海量数据的处理需求。如何以较低成本快速高效地构建大数据处理平台,已成为推动大数据应用创新的重要因素。为了帮助用户以最简便的方式实现这一目标,本文将详细介绍如何利用Hadoop和Spark技术搭建稳定可靠的大数据处理环境。

原文链接

随着人们逐渐认识到 “大数据”的价值,互联网、电商到金融业、政企等各行业开始处理海量数据。如何低成本、敏捷高效地搭建大数据处理平台,成为影响大数据创新效率的关键。

image

为了让用户以最简便地方式享用阿里云全球资源,在云端构建敏捷弹性、高可靠和高性价比的大数据平台,近日,阿里云在成都云栖大会上发布了一款Hadoop/Spark场景专用的ECS存储优化型实例D1规格族,单实例提供最高56核CPU,224GB内存,168TB本地盘容量,5GB/S总吞吐,PPS达120万+。这对Hadoop/Spark技术爱好者来说是个非常大的福音,用户可以轻松在D1上搭建大数据存储与计算分析平台,尤其是互联网、金融、电商、政企等对大数据需求旺盛的行业。
据悉,在云端建设大数据平台的建设周期仅需“数分钟”,比传统模式下缩短95%以上;项目建设成本从一次性重资产投入,变为轻资产分期使用,初期建设成本降低80%以上。
不妨一起来看看,相比传统的Hadoop/Spark场景解决方案,D1都有哪些优势:

•按需部署和弹性灵活

传统大数据平台有几个通病:建设周期过长,扩容不便,因此一般都会适当放大大数据建设规模,造成早期资源闲置浪费,也埋下了后期资源不足的隐患,影响业务发展。云计算很早就解决了弹性建设的问题,我们可以按需进行大数据平台建设,并伴随业务的增长而快速弹性伸缩,企业可以做到按需支付成本。
此外,Hadoop/Spark大数据生态系统中组件众多,每种组件对硬件资源的要求不同,而传统大数据平台建设中,往往很难兼顾资源需求上的差异。D1和其他独享型规格族提供了不同的配置,可以为每个Hadoop/Spark组件节点“量体裁衣”来选择实例,最大限度避免资源浪费。

image

当遇到临时性突发的大数据分析需求时,借助阿里云大数据平台的规模和分析能力,可以快速获得需要的结果,当任务完成后,又能立即释放资源,节省成本。

•性价比

阿里云D1实例采用独享计算架构+本地存储设计,CPU的计算性能在实例间是独享的,这种设计能有效保障大数据计算能力的稳定性。配备高性能企业级6TB SATA硬盘,D1单实例的存储吞吐能力可以达到最大5GB/s,有效缩短HDFS文件读取和写入时间。基于阿里云SDN和网络加速技术,D1在10GE组网环境下,最大可提供20Gbps网络带宽,可满足大数据分析节点间数据交互需求,例如MapReduce计算框架下Shuffle过程等,缩短分析任务整体运行时间。
最重要的一点是,阿里云在D1上做了非常大的交付创新,支持包月、包年的预付费支付模式,同时也支持按小时付费的使用模型,真正做到即开即用,按量付费,没有运维,钱不浪费,云本身的弹性优势就很明显,加上业务上的优化,确实加分不少。

•可靠性


image

这次云栖大会,阿里云还推出了一个ECS独有的部署集(Deployment Set)机制,可以保证用户采用D1实例构建大数据平台时,在任何规模下都可以充分将实例按业务可靠性要求,在阿里云数据中心中,进行机架、交换机、可用区等级别容灾保护。同时,还可以充分享用阿里云全球高效、稳定的机房和网络基础设施,大大降低客户建设复杂度和成本。这在传统模式下是很难做到,既能做到全局的安全性又能做到局部的弹性伸缩,或许,这就是云的终极形态吧。
总之还是非常推荐这款D1实例的,中大型企业对大数据处理平台的稳定性、性价比、部署周期都有比较强的要求的可以考虑一下。


原文链接


推荐阅读
  • 深入解析:主流开源分布式文件系统综述
    本文详细探讨了几款主流的开源分布式文件系统,包括HDFS、MooseFS、Lustre、GlusterFS和CephFS,重点分析了它们的元数据管理和数据一致性机制,旨在为读者提供深入的技术见解。 ... [详细]
  • 本文介绍了Elasticsearch (ES),这是一个基于Java开发的开源全文搜索引擎。ES通过JSON接口提供服务,支持分布式集群管理和索引功能,特别适合大规模数据的快速搜索与分析。 ... [详细]
  • 时序数据是指按时间顺序排列的数据集。通过时间轴上的数据点连接,可以构建多维度报表,揭示数据的趋势、规律及异常情况。 ... [详细]
  • 面对众多的数据分析工具,如何选择最适合自己的那一个?对于初学者而言,了解并掌握几种核心工具是快速入门的关键。本文将从数据处理的不同阶段出发,推荐三种广泛使用的数据分析工具。 ... [详细]
  • 本文详细介绍了如何配置Apache Flume与Spark Streaming,实现高效的数据传输。文中提供了两种集成方案,旨在帮助用户根据具体需求选择最合适的配置方法。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 构建Snowflake中的近实时数据摄取管道
    探索如何在Snowflake中构建高效的近实时数据摄取管道,利用其内外表特性及Snowpipe服务,实现数据的快速、稳定加载。 ... [详细]
  • Flex 截图 实例 ... [详细]
  • 探讨毕业论文撰写的策略与方法
    本文基于作者的个人经验和学术背景,详细探讨了撰写毕业论文的过程,包括选题、研究方向的选择、资料收集、论文结构的构建以及最终的写作和修改过程。文章旨在为即将面临毕业论文撰写的本科生和研究生提供实用的建议。 ... [详细]
  • ArchSummit深圳2014将于7月18日拉开帷幕,所有讲师已确认,涵盖9个热门话题,共36场精彩报告。InfoQ中文站提供了详细的讲师和报告列表。 ... [详细]
  • 大数据核心技术解析
    本文深入探讨了大数据技术的关键领域,包括数据的收集、预处理、存储管理、以及分析挖掘等方面,旨在提供一个全面的技术框架理解。 ... [详细]
  • 本文旨在分享将Hadoop集群从Windows环境迁移到Linux环境过程中遇到的技术难题及其解决方案,以帮助同行或未来的学习者避免类似问题。 ... [详细]
  • 死锁的概念“死锁”指的是:多个线程各自占有一些共享资源,并且互相等待其他线程占有的资源才能进行,而导致两个或者多个线程都在等待对方释放资源 ... [详细]
  • 深入浅出:Hadoop架构详解
    Hadoop作为大数据处理的核心技术,包含了一系列组件如HDFS(分布式文件系统)、YARN(资源管理框架)和MapReduce(并行计算模型)。本文将通过实例解析Hadoop的工作原理及其优势。 ... [详细]
  • 本文介绍了在解决Hive表中复杂数据结构平铺化问题后,如何通过创建视图来准确计算广告日志的曝光PV,特别是针对用户对应多个标签的情况。同时,详细探讨了UDF的使用方法及其在实际项目中的应用。 ... [详细]
author-avatar
荆梦梦丶乐园
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有