热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Rplot图片背景设置为透明_万能转换:R图转成Word、PPT、Excel、HTML、Latex、矢量图等...

R包export可以轻松的将R绘制的图和统计表输出到MicrosoftOffice(Word、PowerPoint和Excel)、HTML和Latex中,其质量可以直

R包export可以轻松的将R绘制的图和统计表输出到 Microsoft Office (Word、PowerPoint和Excel)、HTML和Latex中,其质量可以直接用于发表。

  • 你和PPT高手之间,就只差一个iSlide

  • Excel改变了你的基因名,30% 相关Nature文章受影响,NCBI也受波及

特点

  1. 可以用命令将交互式R图或ggplot2Latticebase R图保存到Microsoft Word、Powerpoint或其他各种位图或矢量格式。

  2. 完全可编辑的Powerpoint矢量格式输出,支持手动整理绘图布局。

  3. 统计分析的输出保存为Excel、Word、PowerPoint、Latex或HTML文档的表格形式。

  4. 自定义R输出格式。

安装

export包可以在Windows、Ubuntu和Mac上跨平台运行。不过有些Mac发行版默认情况下没有安装cairo设备,需要自行安装。如果Mac用户已安装XQuartz,这个问题就解决了,它可以从https://www.xquartz.org/免费获得。

官方CRAN发布

install.packages("export")

该包主要包括以下几种转换

  • graph2bitmap

  • graph2office

  • graph2vector

  • rgl2bitmap 转换3D图

  • table2office

  • table2spreadsheet

  • table2tex

  • graph2bitmap: 将当前R图保存到bmp文件中

  • graph2png: 将当前R图保存到png文件中

  • graph2tif: 将当前R图保存到TIF文件中

  • graph2jpg: 将当前R图保存为JPEG文件

使用帮助信息如下:

graph2bitmap(x = NULL, file = "Rplot", fun = NULL, type = c("PNG","JPG", "TIF"),
aspectr = NULL, width = NULL, height = NULL, dpi = 300,scaling = 100,
fOnt=ifelse(Sys.info()["sysname"] == "Windows", "Arial",
"Helvetica")[[1]], bg = "white", cairo = TRUE,
tiffcompression = c("lzw", "rle", "jpeg", "zip", "lzw+p", "zip+p"),
jpegquality = 99, ...)

  • aspectr: 期望纵横比。如果设置为空,则使用图形设备的纵横比。

  • width: 所需宽度(英寸);可以与期望的纵横比aspectr组合。

  • height: 所需高度(英寸);可以与期望的纵横比aspectr组合。

  • scaling: 按一定比例缩放宽度和高度。

  • font: PNG和TIFF输出中标签所需的字体; Windows系统默认为Arial,其他系统默认为Helvetica。

  • bg: 所需的背景颜色,例如“白色”或“透明”。

  • cairo: 逻辑,指定是否使用Cairographics导出。

  • tiffcompression: 用于TIF文件的压缩。

  • jpegquality: JPEG压缩的质量。

准备开始

安装完 export包后,先调用该包

library(export)

ggplot2绘图

library(ggplot2)
library(datasets)

x=qplot(Sepal.Length, Petal.Length, data = iris,
color = Species, size = Petal.Width, alpha = I(0.7))

qplot()的意思是快速作图,利用它可以很方便的创建各种复杂的图形,其他系统需要好几行代码才能解决的问题,用qplot只需要一行就能完成。

使用半透明的颜色可以有效减少图形元素重叠的现象,要创建半透明的颜色,可以使用alpha图形属性,其值从0(完全透明)到1(完全不透明)。更多ggplot2绘图见ggplot2高效实用指南 (可视化脚本、工具、套路、配色) (往期教程更有很多生物信息相关的例子)。

鸢尾花(iris)是数据挖掘常用到的一个数据集,包含150个鸢尾花的信息,每50个取自三个鸢尾花种之一(setosa,versicolourvirginica)。每个花的特征用下面的5种属性描述萼片长度(Sepal.Length)、萼片宽度(Sepal.Width)、花瓣长度(Petal.Length)、花瓣宽度(Petal.Width)、类(Species)。

在console里展示数据图 (长宽比自己调节):

9148ab7ac0fd5241df33bdbe6fe5b6c5.png

导出图形对象

# 需运行上面的ggplot2绘图
# Create a file name
# 程序会自动加后缀
filen # filen
# There are 3 ways to use graph2bitmap():

### 1. Pass the plot as an object
graph2png(x=x, file=filen, dpi=400, height = 5, aspectr=4)
graph2tif(x=x, file=filen, dpi=400, height = 5, aspectr=4)
graph2jpg(x=x, file=filen, dpi=400, height = 5, aspectr=4)

导出当前绘图窗口展示的图

### 2. Get the plot from current screen device

# 注意这个x,是运行命令,展示图像
x
graph2png(file=filen, dpi=400, height = 5, aspectr=4)
graph2tif(file=filen, dpi=400, height = 5, aspectr=4)
graph2jpg(file=filen, dpi=400, height = 5, aspectr=4)

导出自定义函数输出的一组图

### 3. Pass the plot as a functio
plot.fun print(qplot(Sepal.Length, Petal.Length, data = iris,
color = Species, size = Petal.Width, alpha = 0.7))
}
graph2png(file=filen, fun=plot.fun, dpi=400, height = 5, aspectr=4)
graph2tif(file=filen, fun=plot.fun, dpi=400, height = 5, aspectr=4)
graph2jpg(file=filen, fun=plot.fun, dpi=400, height = 5, aspectr=4)

转换后的图形:

9260632cf9dfdb51fa37249c0887fc69.png

与Office系列的交互

大部分图的细节修改都是用代码完成的,不需要后续的修饰;但如果某一些修改比较特异,不具有程序的通用性特征,或实现起来比较困难,就可以考虑后期修改。比如用AI文章用图的修改和排版。熟悉PPT的,也可以用PPT,这时R的图导出PPT,就要用到graph2office系列函数了。

graph2ppt: 将当前R图保存到Microsoft Office PowerPoint/LibreOffice Impress演示文稿中。

graph2doc:将当前的R图保存到Microsoft Office Word/LibreOffice Writer文档中。

函数参数展示和解释

graph2office(x = NULL, file = "Rplot", fun = NULL, type = c("PPT", "DOC"),
append = FALSE, aspectr = NULL, width = NULL, height = NULL,scaling = 100,
paper = "auto", orient = ifelse(type[1] == "PPT","landscape", "auto"),
margins = c(top = 0.5, right = 0.5, bottom = 0.5, left= 0.5),
center = TRUE, offx = 1, offy = 1, upscale = FALSE, vector.graphic = TRUE, ...)

  • margins: 预设留白边距向量。

  • paper: 纸张尺寸——“A5”至“A1”用于Powerpoint导出,或“A5”至“A3”用于Word输出;默认“auto”自动选择适合您的图形的纸张大小。如果图太大,无法在给定的纸张大小上显示,则按比例缩小。

  • orient: 所需的纸张方向-“自动”,“纵向”或“横向”; Word输出默认为“自动”,Powerpoint默认为“横向”。

  • vector.graphic: 指定是否以可编辑的向量DrawingML格式输出。默认值为TRUE,在这种情况下,编辑Powerpoint或Word中的图形时,可以先对图形元素进行分组。如果设置为FALSE,则将该图以300 dpi的分辨率栅格化为PNG位图格式。(栅(shān)格化,是PS中的一个专业术语,栅格即像素,栅格化即将矢量图形转化为位图。)

同样有3种导出方式

# 需运行上面的ggplot2绘图
# Create a file name
filen # filen
# There are 3 ways to use graph2office():

### 1. Pass the plot as an object
# 导出图形对象

graph2ppt(x=x, file=filen)
graph2doc(x=x, file=filen, aspectr=0.5)
### 2. Get the plot from current screen device

# 导出当前预览窗口呈现的图
x
graph2ppt(file=filen, https://img2.php1.cn/3cdc5/3984/cd5/a053b5caac34e039.png" alt="8480ceaa1d0e6ba57df86a6c430639c7.png" />

f1450baf3b81eac8d0bd990365860eee.png

其它导出到ppt的例子(设置长宽比)

graph2ppt(file="ggplot2_plot.pptx", aspectr=1.7)

增加第二张同样的图,9英寸宽和A4长宽比的幻灯片 (append=T,追加)

graph2ppt(file="ggplot2_plot.pptx", ggplot2_plot.pptx", Rplot", fun = NULL, type = "SVG",aspectr = NULL,
width = NULL, height = NULL, scaling = 100,
fOnt= ifelse(Sys.info()["sysname"] == "Windows",
"Arial","Helvetica")[[1]], bg = "white", colormodel = "rgb",
cairo = TRUE,fallback_resolution = 600, ...)

  • fallback_resolution: dpi中的分辨率用于栅格化不支持的矢量图形。

#需运行上面的ggplot2绘图
# Create a file name
filen # filen # There are 3 ways to use graph2vector():
### 1. Pass the plot as an object
# 导出图形对象
graph2svg(x=x, file=filen, aspectr=2, fOnt= "Times New Roman",
height = 5, bg = "white")
graph2pdf(x=x, file=filen, aspectr=2, fOnt= "Arial",
height = 5, bg = "transparent")
graph2eps(x=x, file=filen, aspectr=2, fOnt= "Arial",
height = 5, bg = "transparent")

# 导出当前预览窗口呈现的图
### 2. Get the plot from current screen device
x
graph2svg(file=filen, aspectr=2, fOnt= "Arial",
height = 5, bg = "transparent")
graph2pdf(file=filen, aspectr=2, fOnt= "Times New Roman",
height = 5, bg = "white")
graph2eps(file=filen, aspectr=2, fOnt= "Times New Roman",
height = 5, bg = "white")

# 导出自定义函数输出的一系列图
### 3. Pass the plot as a function

graph2svg(file=filen, fun = plot.fun, aspectr=2, fOnt= "Arial",
height = 5, bg = "transparent")
graph2pdf(file=filen, fun=plot.fun, aspectr=2, fOnt= "Arial",
height = 5, bg = "transparent")
graph2eps(file=filen, fun=plot.fun, aspectr=2, fOnt= "Arial",
height = 5, bg = "transparent")

转换3D图形

rgl2png: 将当前的rgl 3D图形保存为PNG格式。

rgl2bitmap(file = "Rplot", type = c("PNG"))

# Create a file name
filen # filen
# Generate a 3D plot using 'rgl'
x = y = seq(-10, 10, length = 20)
z = outer(x, y, function(x, y) x^2 + y^2)
rgl::persp3d(x, y, z, col = 'lightblue')

# Save the plot as a png
rgl2png(file = filen)
# Note that omitting 'file' will save in current directory

生成的3D图形:

05e169b754062ab81b437516347e950e.png

将生成的3D图形保存为PNG格式:

5b9e3d762851b0c0f1b2e451735ccb9b.png

输出统计结果到表格 table2spreadsheet

  • table2excel: 导出统计输出到Microsoft Office Excel/ LibreOffice Calc电子表格中的一个表.

  • table2csv:将统计输出以CSV格式导出到表中(“,”表示值分隔,“。”表示小数)

  • table2csv2: 将统计输出以CSV格式导出到表中(“;”表示值分隔,”,”表示小数)

table2spreadsheet(x = NULL, file = "Rtable", type = c("XLS", "CSV",
"CSV2"), append = FALSE, sheetName = "new sheet", digits = 2,
digitspvals = 2, trim.pval = TRUE, add.rownames = FALSE, ...)

  • sheetName: 一个字符串,给出创建的新工作表的名称(仅针对type==”XLS”)。它必须是惟一的(不区分大小写),不受文件中任何现有工作表名称的影响。

  • digits:除具有p值的列外,要显示所有列的有效位数的数目。

  • digitspvals:具有p值的列要显示的有效位数的数目。

# Create a file name
filen # filen
# Generate ANOVA output
fit=aov(yield ~ block + N * P + K, data = npk) # 'npk' dataset from base 'datasets'
x=summary(fit)

# Save ANOVA table as a CSV
### Option 1: pass output as object
# 输出对象
table2csv(x=x,file=filen, digits = 1, digitspvals = 3, add.rownames=TRUE)

# 屏幕输出导出到文件
### Option 2: get output from console
summary(fit)
table2csv(file=filen, digits = 2, digitspvals = 4, add.rownames=TRUE)

# Save ANOVA table as an Excel
# Without formatting of the worksheet
x
table2excel(file=filen, sheetName="aov_noformatting", digits = 1, digitspvals = 3, add.rownames=TRUE)
# 更多参数
# With formatting of the worksheet
table2excel(x=x,file=filen, sheetName="aov_formated", append = TRUE, add.rownames=TRUE, fOntName="Arial", fOntSize= 14, fOntColour= rgb(0.15,0.3,0.75), border=c("top", "bottom"), fgFill = rgb(0.9,0.9,0.9), halign = "center", valign = "center", textDecoration="italic")

原始数据的表格:

003f69b42aedbb8989b10eaaabf8ea9f.png

转换格式之后的,在console中的数据:

d3b400b81ac0662ea1a60268a4d73b26.png

文件(csv和excel)中表格数据:

e0a76cc4d1c4564211c866502b394602.png

3f5ae7dea9091bbe590aa072128628c6.png

导出为Word中的表,再也不用复制粘贴调格式了 table2office

table2ppt: 导出统计输出到Microsoft Office PowerPoint/ LibreOffice Impress演示文稿中的表

table2doc: 将统计输出导出到Microsoft Office Word/ LibreOffice Writer文档中的表

table2office(x = NULL, file = "Rtable", type = c("PPT", "DOC"),
append = FALSE, digits = 2, digitspvals = 2, trim.pval = TRUE,
width = NULL, height = NULL, offx = 1, offy = 1,
fOnt= ifelse(Sys.info()["sysname"] == "Windows", "Arial",
"Helvetica")[[1]], pointsize = 12, add.rownames = FALSE)

# Create a file name
filen # filen
# Generate ANOVA output
fit=aov(yield ~ block + N * P + K, data = npk) # 'npk' dataset from base 'datasets'
# Save ANOVA table as a PPT
### Option 1: pass output as object
x=summary(fit)
table2ppt(x=x,file=filen, digits = 1, digitspvals = 3, add.rownames =TRUE)

### Option 2: get output from console
summary(fit)
table2ppt(x=x,file=filen, Times New Roman", pointsize=14, digits=4, digitspvals=1, append=TRUE, add.rownames =TRUE) # append table to previous slide

# Save ANOVA table as a DOC file
table2doc(x=x,file=filen, digits = 1, digitspvals = 3, add.rownames =TRUE)
summary(fit)
table2doc(file=filen, Times New Roman", pointsize=14, digits=4, digitspvals=1, append=TRUE, add.rownames =TRUE) # append table at end of document

将表格数据导出到ppt和word中:

c97f5cf865121f9cfac195416a181f9c.png

0b19983fdd541ad95a75732b040278fa.png

table2tex

table2html: 导出统计输出到HTML表。

table2tex(x = NULL, file = "Rtable", type = "TEX", digits = 2,
digitspvals = 2, trim.pval = TRUE, summary = FALSE, standAlOne= TRUE,
add.rownames = FALSE, ...)

summary:是否汇总数据文件。

standAlone:导出的Latex代码应该是独立可编译的,还是应该粘贴到另一个文档中。

add.rownames:是否应该将行名添加到表中(在第一列之前插入一列)。

# Create a file name
filen # filen
# Generate ANOVA output
fit=aov(yield ~ block + N * P + K, data = npk) # 'npk' dataset from base 'datasets'
x=summary(fit)

# Export to Latex in standAlone format
table2tex(x=x,file=filen,add.rownames = TRUE)
# Export to Latex to paste in tex document
summary(fit) # get output from the console
table2tex(file=filen, standAlOne= FALSE,add.rownames = TRUE)

# Export to HTML
table2html(x=x,file=filen) # or
summary(fit) # get output from the console
table2html(file=filen,add.rownames = TRUE)

导出到html或tex中的表格数据:

0eed67c07707bfd5aa86521e20024e09.png

R统计和作图

  • Graphpad,经典绘图工具初学初探

  • 维恩(Venn)图绘制工具大全 (在线+R包)

  • 在R中赞扬下努力工作的你,奖励一份CheatShet

  • 别人的电子书,你的电子书,都在bookdown

  • R语言 - 入门环境Rstudio

  • R语言 - 热图绘制 (heatmap)

  • R语言 - 基础概念和矩阵操作

  • R语言 - 热图简化

  • R语言 - 热图美化

  • R语言 - 线图绘制

  • R语言 - 线图一步法

  • R语言 - 箱线图(小提琴图、抖动图、区域散点图)

  • R语言 - 箱线图一步法

  • R语言 - 火山图

  • R语言 - 富集分析泡泡图

  • R语言 - 散点图绘制

  • R语言 - 韦恩图

  • R语言 - 柱状图

  • R语言 - 图形设置中英字体

  • R语言 - 非参数法生存分析

  • R语言 - 绘制seq logo图

  • WGCNA分析,简单全面的最新教程

  • psych +igraph:共表达网络构建

  • 一文学会网络分析——Co-occurrence网络图在R中的实现

  • 一文看懂PCA主成分分析

  • 富集分析DotPlot,可以服

  • 基因共表达聚类分析和可视化

  • R中1010个热图绘制方法

  • 还在用PCA降维?快学学大牛最爱的t-SNE算法吧, 附Python/R代码

  • 一个函数抓取代谢组学权威数据库HMDB的所有表格数据

  • 文章用图的修改和排版

  • network3D: 交互式桑基图

  • network3D 交互式网络生成

  • Seq logo 在线绘制工具——Weblogo

  • 生物AI插图素材获取和拼装指导

  • ggplot2高效实用指南 (可视化脚本、工具、套路、配色)

  • 图像处理R包magick学习笔记

  • SOM基因表达聚类分析初探

  • 利用gganimate可视化全球范围R-Ladies(R社区性别多样性组织)发展情况

  • 一分钟绘制磷脂双分子层:AI零基础入门和基本图形绘制

  • AI科研绘图(二):模式图的基本画法

  • 你知道R中的赋值符号箭头(

  • R语言可视化学习笔记之ggridges包

  • 利用ComplexHeatmap绘制热图(一)

  • ggplot2学习笔记之图形排列

  • R包reshape2,轻松实现长、宽数据表格转换

  • 用R在地图上绘制网络图的三种方法

  • PCA主成分分析实战和可视化 附R代码和测试数据

  • iTOL快速绘制颜值最高的进化树!

  • 12个ggplot2扩展包帮你实现更强大的可视化

  • 编程模板-R语言脚本写作:最简单的统计与绘图,包安装、命令行参数解析、文件读取、表格和矢量图输出

  • R语言统计入门课程推荐——生物科学中的数据分析Data Analysis for the Life Sciences

  • 数据可视化基本套路总结

  • 你知道R中的赋值符号箭头和等号=的区别吗?

  • 使用dplyr进行数据操作30例

  • 交集intersect、并集union、找不同setdiff

  • R包reshape2,轻松实现长、宽数据表格转换

  • 1数据类型(向量、数组、矩阵、 列表和数据框)

  • 2读写数据所需的主要函数、与外部环境交互

  • 3数据筛选——提取对象的子集

  • 4向量、矩阵的数学运算

  • 5控制结构

  • 6函数及作用域

  • 7认识循环函数lapply和sapply

  • 8分解数据框split和查看对象str

  • 9模拟—随机数、抽样、线性模型

  • 1初识ggplot2绘制几何对象

  • 2图层的使用—基础、加标签、注释

  • 3工具箱—误差线、加权数、展示数据分布

  • 4语法基础

  • 5通过图层构建图像

  • 6标度、轴和图例

  • 7定位-分面和坐标系

  • 8主题设置、存储导出

  • 9绘图需要的数据整理技术

  • 创建属于自己的调色板

  • 28个实用绘图包,总有几个适合你

  • 热图绘制

  • R做线性回归

  • 绘图相关系数矩阵corrplot

  • 相关矩阵可视化ggcorrplot

  • 绘制交互式图形recharts

  • 交互式可视化CanvasXpress

  • 聚类分析factoextra

  • LDA分析、作图及添加置信-ggord

  • 解决散点图样品标签重叠ggrepel

  • 添加P值或显著性标记ggpubr

  • Alpha多样性稀释曲线rarefraction curve

  • 堆叠柱状图各成分连线画法:突出组间变化

  • 冲击图展示组间时间序列变化ggalluvial

  • 桑基图riverplot

  • 微生物环境因子分析ggvegan

  • 五彩进化树与热图更配ggtree

  • 多元回归树分析mvpart

  • 随机森林randomForest 分类Classification 回归Regression

  • 加权基因共表达网络分析WGCNA

  • circlize包绘制circos-plot

  • R语言搭建炫酷的线上博客系统

  • 28个实用绘图包,总有几个适合你

  • 热图绘制

  • R做线性回归

  • 绘图相关系数矩阵corrplot

  • 相关矩阵可视化ggcorrplot

  • 绘制交互式图形recharts

  • 交互式可视化CanvasXpress

  • 聚类分析factoextra

  • LDA分析、作图及添加置信-ggord

  • 解决散点图样品标签重叠ggrepel

  • 添加P值或显著性标记ggpubr

  • Alpha多样性稀释曲线rarefraction curve

  • 堆叠柱状图各成分连线画法:突出组间变化

  • 冲击图展示组间时间序列变化ggalluvial

  • 桑基图riverplot

  • 微生物环境因子分析ggvegan

  • 五彩进化树与热图更配ggtree

  • 多元回归树分析mvpart

  • 随机森林randomForest 分类Classification 回归Regression

  • 加权基因共表达网络分析WGCNA

  • circlize包绘制circos-plot

  • R语言搭建炫酷的线上博客系统

  • 维恩(Venn)图绘制工具大全 (在线+R包)

  • R包circlize:柱状图用腻了?试试好看的弦状图

  • 获取pheatmap聚类后和标准化后的结果

  • 增强火山图,要不要试一下?

  • 一个震撼的交互型3D可视化R包 - 可直接转ggplot2图为3D

  • 赠你一只金色的眼 - 富集分析和表达数据可视化

  • 是Excel的图,不!是R的图

  • 道友,来Rstudio里面看动画了

  • 用了这么多年的PCA可视化竟然是错的!!!

猜你喜欢

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature Cell专刊 肠道指挥大脑

系列教程:微生物组入门 Biostar 微生物组  宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

一文读懂:宏基因组 寄生虫益处 进化树

必备技能:提问 搜索  Endnote

文献阅读 热心肠 SemanticScholar Geenmedical

扩增子分析:图表解读 分析流程 统计绘图

16S功能预测   PICRUSt  FAPROTAX  Bugbase Tax4Fun

在线工具:16S预测培养基 生信绘图

科研经验:云笔记  云协作 公众号

编程模板: Shell  R Perl

生物科普:  肠道细菌 人体上的生命 生命大跃进  细胞暗战 人体奥秘  

写在后面

为鼓励读者交流、快速解决科研困难,我们建立了“宏基因组”专业讨论群,目前己有国内外5000+ 一线科研人员加入。参与讨论,获得专业解答,欢迎分享此文至朋友圈,并扫码加主编好友带你入群,务必备注“姓名-单位-研究方向-职称/年级”。PI请明示身份,另有海内外微生物相关PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。

16068c4a44cb231bdb64d015aa816529.png

学习16S扩增子、宏基因组科研思路和分析实战,关注“宏基因组”

6a444af999bd311afa897c060eb93b44.png



推荐阅读
  • 如何将TS文件转换为M3U8直播流:HLS与M3U8格式详解
    在视频传输领域,MP4虽然常见,但在直播场景中直接使用MP4格式存在诸多问题。例如,MP4文件的头部信息(如ftyp、moov)较大,导致初始加载时间较长,影响用户体验。相比之下,HLS(HTTP Live Streaming)协议及其M3U8格式更具优势。HLS通过将视频切分成多个小片段,并生成一个M3U8播放列表文件,实现低延迟和高稳定性。本文详细介绍了如何将TS文件转换为M3U8直播流,包括技术原理和具体操作步骤,帮助读者更好地理解和应用这一技术。 ... [详细]
  • 本文回顾了作者初次接触Unicode编码时的经历,并详细探讨了ASCII、ANSI、GB2312、UNICODE以及UTF-8和UTF-16编码的区别和应用场景。通过实例分析,帮助读者更好地理解和使用这些编码。 ... [详细]
  • 在CentOS 7环境中安装配置Redis及使用Redis Desktop Manager连接时的注意事项与技巧
    在 CentOS 7 环境中安装和配置 Redis 时,需要注意一些关键步骤和最佳实践。本文详细介绍了从安装 Redis 到配置其基本参数的全过程,并提供了使用 Redis Desktop Manager 连接 Redis 服务器的技巧和注意事项。此外,还探讨了如何优化性能和确保数据安全,帮助用户在生产环境中高效地管理和使用 Redis。 ... [详细]
  • 在Linux系统中避免安装MySQL的简易指南
    在Linux系统中避免安装MySQL的简易指南 ... [详细]
  • Python 程序转换为 EXE 文件:详细解析 .py 脚本打包成独立可执行文件的方法与技巧
    在开发了几个简单的爬虫 Python 程序后,我决定将其封装成独立的可执行文件以便于分发和使用。为了实现这一目标,首先需要解决的是如何将 Python 脚本转换为 EXE 文件。在这个过程中,我选择了 Qt 作为 GUI 框架,因为之前对此并不熟悉,希望通过这个项目进一步学习和掌握 Qt 的基本用法。本文将详细介绍从 .py 脚本到 EXE 文件的整个过程,包括所需工具、具体步骤以及常见问题的解决方案。 ... [详细]
  • Visual Studio Code (VSCode) 是一款功能强大的源代码编辑器,支持多种编程语言,具备丰富的扩展生态。本文将详细介绍如何在 macOS 上安装、配置并使用 VSCode。 ... [详细]
  • 最详尽的4K技术科普
    什么是4K?4K是一个分辨率的范畴,即40962160的像素分辨率,一般用于专业设备居多,目前家庭用的设备,如 ... [详细]
  • 在 Ubuntu 中遇到 Samba 服务器故障时,尝试卸载并重新安装 Samba 发现配置文件未重新生成。本文介绍了解决该问题的方法。 ... [详细]
  • Python 3 Scrapy 框架执行流程详解
    本文详细介绍了如何在 Python 3 环境下安装和使用 Scrapy 框架,包括常用命令和执行流程。Scrapy 是一个强大的 Web 抓取框架,适用于数据挖掘、监控和自动化测试等多种场景。 ... [详细]
  • 详解 Qt 串口通信程序全程图文 (4)
    Qt串口通信程序全程图文是本文介绍的内容,本文一开始先讲解对程序的改进,在文章最后将要讲解一些重要问题。1、在窗口中加入一些组合框ComboBox&# ... [详细]
  • 在Windows系统中安装TensorFlow GPU版的详细指南与常见问题解决
    在Windows系统中安装TensorFlow GPU版是许多深度学习初学者面临的挑战。本文详细介绍了安装过程中的每一个步骤,并针对常见的问题提供了有效的解决方案。通过本文的指导,读者可以顺利地完成安装并避免常见的陷阱。 ... [详细]
  • 视频编码涉及多个关键参数,如比特率、帧率和采样率等。比特率(Bit Rate)是指单位时间内视频或音频文件的数据传输量,通常以千比特每秒(Kbps)为单位。这些参数对视频质量和文件大小有重要影响。帧率(Frame Rate)表示每秒钟显示的图像帧数,而采样率(Sample Rate)则指每秒从连续信号中提取并形成离散信号的次数。了解这些基础概念有助于更好地优化视频编码效果。 ... [详细]
  • 在《Linux高性能服务器编程》一书中,第3.2节深入探讨了TCP报头的结构与功能。TCP报头是每个TCP数据段中不可或缺的部分,它不仅包含了源端口和目的端口的信息,还负责管理TCP连接的状态和控制。本节内容详尽地解析了TCP报头的各项字段及其作用,为读者提供了深入理解TCP协议的基础。 ... [详细]
  • 在对WordPress Duplicator插件0.4.4版本的安全评估中,发现其存在跨站脚本(XSS)攻击漏洞。此漏洞可能被利用进行恶意操作,建议用户及时更新至最新版本以确保系统安全。测试方法仅限于安全研究和教学目的,使用时需自行承担风险。漏洞编号:HTB23162。 ... [详细]
  • 卓盟科技:动态资源加载技术的兼容性优化与升级 | Android 开发者案例分享
    随着游戏内容日益复杂,资源加载过程已不仅仅是简单的进度显示,而是连接玩家与开发者的桥梁。玩家对快速加载的需求越来越高,这意味着开发者需要不断优化和提升动态资源加载技术的兼容性和性能。卓盟科技通过一系列的技术创新,不仅提高了加载速度,还确保了不同设备和系统的兼容性,为用户提供更加流畅的游戏体验。 ... [详细]
author-avatar
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有