热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

RecoveringSurfaceNormalandArbitraryImages:ADualRegressionNetworkforPhotometricStereo

RecoveringSurfaceNormalandArbitraryImages:ADualRegressionNetworkforPhotometricStereo恢复表面法

Recovering Surface Normal and Arbitrary Images: A Dual Regression Network for Photometric Stereo

恢复表面法向和任意图像:
一种用于光度立体视觉的双回归网络
Author:Yakun Ju, Junyu Dong,Sheng Chen
中国海洋大学计算机科学与技术系,山东青岛


Abstract

光度立体法从不同照明方向下的多幅图像中恢复三维物体表面法线。传统的测光立体声方法存在非朗伯面具有一般反射率的问题。通过利用深度神经网络,基于学习的方法能够改进一般非朗伯曲面下的表面法向估计。然而,这些最先进的基于学习的方法并没有将表面法线重建图像相关联,因此,它们不能探索这种关联对表面法线估计的有益影响。在本文中,我们特别地利用了这种关联的积极影响,并提出了一种新的对偶回归网络,无论是良好的表面法线和任意重建的图像在标定的光度立体。我们的工作将三维重建和渲染任务统一在一个深度学习框架中,探索包括:1。在任意照明方向下生成指定的重建图像,提供更直观的反射率感知,对视觉应用非常有用,如虚拟现实和2。我们的双重回归方案在观测图像和重建图像上引入了额外的约束,形成一个闭环来提供


推荐阅读
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • 本文详细介绍了 Java 网站开发的相关资源和步骤,包括常用网站、开发环境和框架选择。 ... [详细]
  • 非计算机专业的朋友如何拿下多个Offer
    大家好,我是归辰。秋招结束后,我已顺利入职,并应公子龙的邀请,分享一些秋招面试的心得体会,希望能帮助到学弟学妹们,让他们在未来的面试中更加顺利。 ... [详细]
  • 本文介绍了实现人工智能的多种方法,并重点探讨了当前最热门的技术——通过深度学习训练神经网络。文章通过具体实例详细解释了神经网络的基本原理及其应用。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 最详尽的4K技术科普
    什么是4K?4K是一个分辨率的范畴,即40962160的像素分辨率,一般用于专业设备居多,目前家庭用的设备,如 ... [详细]
  • 在2019中国国际智能产业博览会上,百度董事长兼CEO李彦宏强调,人工智能应务实推进其在各行业的应用。随后,在“ABC SUMMIT 2019百度云智峰会”上,百度展示了通过“云+AI”推动AI工业化和产业智能化的最新成果。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 中国学者实现 CNN 全程可视化,详尽展示每次卷积、ReLU 和池化过程 ... [详细]
  • 浅层神经网络解析:本文详细探讨了两层神经网络(即一个输入层、一个隐藏层和一个输出层)的结构与工作原理。通过吴恩达教授的课程,读者将深入了解浅层神经网络的基本概念、参数初始化方法以及前向传播和反向传播的具体实现步骤。此外,文章还介绍了如何利用这些基础知识解决实际问题,并提供了丰富的实例和代码示例。 ... [详细]
  • 深入解析经典卷积神经网络及其实现代码
    深入解析经典卷积神经网络及其实现代码 ... [详细]
  • 超分辨率技术的全球研究进展与应用现状综述
    本文综述了图像超分辨率(Super-Resolution, SR)技术在全球范围内的最新研究进展及其应用现状。超分辨率技术旨在从单幅或多幅低分辨率(Low-Resolution, LR)图像中恢复出高质量的高分辨率(High-Resolution, HR)图像。该技术在遥感、医疗成像、视频处理等多个领域展现出广泛的应用前景。文章详细分析了当前主流的超分辨率算法,包括基于传统方法和深度学习的方法,并探讨了其在实际应用中的优缺点及未来发展方向。 ... [详细]
author-avatar
彭伟波2013
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有