热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

R教材8功效分析

在给定置信度下,判断检测到给定值时所需要的样本量;也能计算在某样本量内能检测到给定效应值的概率功效是1-二类错误,1-β,看做真实效应发生的概率效应值是在备选或研究假设下效应的量对
  1. 在给定置信度下,判断检测到给定值时所需要的样本量;也能计算在某样本量内能检测到给定效应值的概率
    1. 功效是1-二类错误,1-β,看做真实效应发生的概率
    2. 效应值是在备选或研究假设下效应的量
    3. 对于每个函数,用户设定(样本大小n,显著性水平α,功效,效应值)中的三个量,第四个量可以计算出来
  2. 功效分析函数
    1. t检验:pwr::pwr.t.test(n,d,sig.level,power,type,alternative)
      1. n为每组样本大小
      2. d为效应值,即标准化均值的差
      3. sig.level显著性水平
      4. power功效水平
      5. type检验类型:
        1. 双样本t检验two.sample
        2. 单样本t检验one.sample
        3. 分组样本t检验paired
      6. alternative:双侧two.sided,单侧less、greater
    2. n不相等的t检验:pwr.t2n.test(n1=,n2=,…)
    3. 方差分析pwr.anova.test(k,n,f,sig.level,power)
      1. k是组个数
      2. n是各组样本量
      3. f是效应值,方差分析的衡量量
    4. 相关性pwr.r.test(n,r,sig.level,power,alternative)
      1. r是相关性大小
    5. 线性模型pwr.f2.test(u,v,f2,sig.level,power)
      1. u分子自由度
      2. v分母自由度
      3. f2是效应值
    6. 比例检验pwr.2p.test(h,n,sig.level,power)
      1. 效应值h,ES.h(p1,p2)来计算
    7. 各组n不同的比例检验pwr.2p2n,test(h,n1,n2,sig.level,power)
      1. 以上比例检验默认alternative为双侧检验,实际情况是对于两个对象差异的比较可能会带有高低之分,为了检验是否大于或小于的情况要用单边检验
    8. 卡方检验pwr.chisq.test(w,n,df,sig.level,power)
      1. w是效应值,ES.w2(p)可以计算双因素列联表中备择假设的效应值,p是假设的双因素矩阵
      2. df是自由度,双因素列联表的自由度为(r-1)(c-1)
  3. 未知情况选择效应值

 


推荐阅读
author-avatar
马丁乐_449
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有