热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

求和为指定数字的连续正整数数列

对于这种算法的设计,我们最容易想到的就是从1到sn循环遍历所有的数,对于每个数再循环计算是否以这个数为起点总和正好是sn。这种算法的时间复杂度大概是O(n*log2n),也就是说如果这样计算,当sn100万时,大概需要循环2000万次左右。这样做效率自然是比较低的。那么我们有没有比上述方法更高效的方法呢?答案是肯定的。

比如 sn = 100 时,总和为100 的连续正整数数列有

100
18 19 20 21 22
9 10 11 12 13 14 15 16

对于这种算法的设计,我们最容易想到的就是从 1 到 sn 循环遍历所有的数,对于每个数再循环计算是否以这个数为起点总和正好是sn。这种算法的时间复杂度大概是O(n*log2n), 也就是说如果这样计算,当 sn = 100万时,大概需要循环 2000万次左右。 这样做效率自然是比较低的。那么我们有没有比上述方法更高效的方法呢?答案是肯定的。

首先我们看等差数列求和的公式:Sn=n(a1+an)/2=na1+n(n-1)/2

从这个公式我们不难看出当 Sn 和 n 固定时求a1 是一个线性函数:a1 = (Sn – n(n-1)/2) / n

有了这个函数,优化这个算法就很简单了,我们只要把 n 从 1 开始遍历,一直遍历到 (Sn – n(n-1)/2)

题目:在1~500这500个整数中,找出连续相加等于500的数?

简要分析:int[] X={1,2,i,…………499}

条件是:i+(i+1)+ ……+(i+k)=500 (1式)

运用等差数列求和公式:(k+1)*i+(k+1)*k/2=500 (2式)

其中i和k还有一个隐藏关系i*k<500 (3式)

于是很自然得到如下解法:

	private static void GetSomeInt(int maxInt)
      {
          for (int i = 1; i <(maxInt - 1); i++)
          {
              for (int k = 1; k <(maxInt / i); k++)
              {
                  if (((k + 1) * i + k * (k + 1) / 2) == maxInt)
                  {
                      /*******************输出结果集*********************/
                      string result = "xi=";
                      for (int s = 0; s <(k + 1); s++)
                      {
                          result += (i + s).ToString() + ";";
                      }
                      result = result.TrimEnd(';');
                      Console.WriteLine(result);
                      /************************************************/
                  }
              }
          }
      } 

得出结果:

xi=8;9;10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25;26;27;28;29;30;31;32
xi=59;60;61;62;63;64;65;66
xi=98;99;100;101;102

这个算法 sn = 100 万时,循环次数是 12970034 次,比之前说的算法效率上要低将近1万倍。

下面给出差点的算法代码

       static void ListSequence(int sn)
        {
            //忽略 sn 不是正整数的情况
            if (sn <= 0)
            {
                return;
            }
 
            int n = 1; //n 从1 开始遍历
 
            int m = sn - n * (n - 1) / 2; //m 为 Sn – n(n-1)/2
 
            while (m >= n) //当m 												

本文地址:http://www.nowamagic.net/librarys/veda/detail/1042,欢迎访问原出处。


推荐阅读
  • 计算机网络复习:第五章 网络层控制平面
    本文探讨了网络层的控制平面,包括转发和路由选择的基本原理。转发在数据平面上实现,通过配置路由器中的转发表完成;而路由选择则在控制平面上进行,涉及路由器中路由表的配置与更新。此外,文章还介绍了ICMP协议、两种控制平面的实现方法、路由选择算法及其分类等内容。 ... [详细]
  • 本文将介绍如何使用 Go 语言编写和运行一个简单的“Hello, World!”程序。内容涵盖开发环境配置、代码结构解析及执行步骤。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 探讨一个显示数字的故障计算器,它支持两种操作:将当前数字乘以2或减去1。本文将详细介绍如何用最少的操作次数将初始值X转换为目标值Y。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文探讨如何设计一个安全的加密和验证算法,确保生成的密码具有高随机性和低重复率,并提供相应的验证机制。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 在金融和会计领域,准确无误地填写票据和结算凭证至关重要。这些文件不仅是支付结算和现金收付的重要依据,还直接关系到交易的安全性和准确性。本文介绍了一种使用C语言实现小写金额转换为大写金额的方法,确保数据的标准化和规范化。 ... [详细]
  • 在给定的数组中,除了一个数字外,其他所有数字都是相同的。任务是找到这个唯一的不同数字。例如,findUniq([1, 1, 1, 2, 1, 1]) 返回 2,findUniq([0, 0, 0.55, 0, 0]) 返回 0.55。 ... [详细]
  • 本文探讨了卷积神经网络(CNN)中感受野的概念及其与锚框(anchor box)的关系。感受野定义了特征图上每个像素点对应的输入图像区域大小,而锚框则是在每个像素中心生成的多个不同尺寸和宽高比的边界框。两者在目标检测任务中起到关键作用。 ... [详细]
  • 网络攻防实战:从HTTP到HTTPS的演变
    本文通过一系列日记记录了从发现漏洞到逐步加强安全措施的过程,探讨了如何应对网络攻击并最终实现全面的安全防护。 ... [详细]
  • 本文深入探讨了Linux系统中网卡绑定(bonding)的七种工作模式。网卡绑定技术通过将多个物理网卡组合成一个逻辑网卡,实现网络冗余、带宽聚合和负载均衡,在生产环境中广泛应用。文章详细介绍了每种模式的特点、适用场景及配置方法。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 深度学习理论解析与理解
    梯度方向指示函数值增加的方向,由各轴方向的偏导数综合而成,其模长表示函数值变化的速率。本文详细探讨了导数、偏导数、梯度等概念,并结合Softmax函数、卷积神经网络(CNN)中的卷积计算、权值共享及池化操作进行了深入分析。 ... [详细]
author-avatar
学渣小小柱
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有