热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

求和为指定数字的连续正整数数列

对于这种算法的设计,我们最容易想到的就是从1到sn循环遍历所有的数,对于每个数再循环计算是否以这个数为起点总和正好是sn。这种算法的时间复杂度大概是O(n*log2n),也就是说如果这样计算,当sn100万时,大概需要循环2000万次左右。这样做效率自然是比较低的。那么我们有没有比上述方法更高效的方法呢?答案是肯定的。

比如 sn = 100 时,总和为100 的连续正整数数列有

100
18 19 20 21 22
9 10 11 12 13 14 15 16

对于这种算法的设计,我们最容易想到的就是从 1 到 sn 循环遍历所有的数,对于每个数再循环计算是否以这个数为起点总和正好是sn。这种算法的时间复杂度大概是O(n*log2n), 也就是说如果这样计算,当 sn = 100万时,大概需要循环 2000万次左右。 这样做效率自然是比较低的。那么我们有没有比上述方法更高效的方法呢?答案是肯定的。

首先我们看等差数列求和的公式:Sn=n(a1+an)/2=na1+n(n-1)/2

从这个公式我们不难看出当 Sn 和 n 固定时求a1 是一个线性函数:a1 = (Sn – n(n-1)/2) / n

有了这个函数,优化这个算法就很简单了,我们只要把 n 从 1 开始遍历,一直遍历到 (Sn – n(n-1)/2)

题目:在1~500这500个整数中,找出连续相加等于500的数?

简要分析:int[] X={1,2,i,…………499}

条件是:i+(i+1)+ ……+(i+k)=500 (1式)

运用等差数列求和公式:(k+1)*i+(k+1)*k/2=500 (2式)

其中i和k还有一个隐藏关系i*k<500 (3式)

于是很自然得到如下解法:

	private static void GetSomeInt(int maxInt)
      {
          for (int i = 1; i <(maxInt - 1); i++)
          {
              for (int k = 1; k <(maxInt / i); k++)
              {
                  if (((k + 1) * i + k * (k + 1) / 2) == maxInt)
                  {
                      /*******************输出结果集*********************/
                      string result = "xi=";
                      for (int s = 0; s <(k + 1); s++)
                      {
                          result += (i + s).ToString() + ";";
                      }
                      result = result.TrimEnd(';');
                      Console.WriteLine(result);
                      /************************************************/
                  }
              }
          }
      } 

得出结果:

xi=8;9;10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25;26;27;28;29;30;31;32
xi=59;60;61;62;63;64;65;66
xi=98;99;100;101;102

这个算法 sn = 100 万时,循环次数是 12970034 次,比之前说的算法效率上要低将近1万倍。

下面给出差点的算法代码

       static void ListSequence(int sn)
        {
            //忽略 sn 不是正整数的情况
            if (sn <= 0)
            {
                return;
            }
 
            int n = 1; //n 从1 开始遍历
 
            int m = sn - n * (n - 1) / 2; //m 为 Sn – n(n-1)/2
 
            while (m >= n) //当m 												

本文地址:http://www.nowamagic.net/librarys/veda/detail/1042,欢迎访问原出处。


推荐阅读
  • 使用R语言进行Foodmart数据的关联规则分析与可视化
    本文探讨了如何利用R语言中的arules和arulesViz包对Foodmart数据集进行关联规则的挖掘与可视化。文章首先介绍了数据集的基本情况,然后逐步展示了如何进行数据预处理、规则挖掘及结果的图形化呈现。 ... [详细]
  • 分布式计算助力链力实现毫秒级安全响应,确保100%数据准确性
    随着分布式计算技术的发展,其在数据存储、文件传输、在线视频、社交平台及去中心化金融等多个领域的应用日益广泛。国际知名企业如Firefox、Google、Opera、Netflix、OpenBazaar等均已采用该技术,推动了技术创新和服务升级。 ... [详细]
  • 本文介绍了如何使用jQuery获取浏览器窗口的可视区域高度、文档的整体高度以及宽度等关键尺寸信息,包括边界、填充和边距在内的完整尺寸。 ... [详细]
  • SPFA算法详解与应用
    当图中包含负权边时,传统的最短路径算法如Dijkstra不再适用,而Bellman-Ford算法虽然能解决问题,但其时间复杂度过高。SPFA算法作为一种改进的Bellman-Ford算法,能够在多数情况下提供更高效的解决方案。本文将详细介绍SPFA算法的原理、实现步骤及其应用场景。 ... [详细]
  • 本文详细介绍了Socket在Linux内核中的实现机制,包括基本的Socket结构、协议操作集以及不同协议下的具体实现。通过这些内容,读者可以更好地理解Socket的工作原理。 ... [详细]
  • 探索CNN的可视化技术
    神经网络的可视化在理论学习与实践应用中扮演着至关重要的角色。本文深入探讨了三种有效的CNN(卷积神经网络)可视化方法,旨在帮助读者更好地理解和优化模型。 ... [详细]
  • 我整理了HMOV四大5G旗舰的参数,可依然没能拯救我的选择困难症
    伊瓢茕茕发自凹非寺量子位报道|公众号QbitAI报道了那么多发布会,依然无法选出要换的第一部5G手机。这不,随着华为P40系列发布,目前国 ... [详细]
  • 最优化算法与matlab应用3:最速下降法
    最优化算法与matlab应用3:最速下降法最速下降法是一种沿着N维目标函数的负梯度方向搜索最小值的方法。(1)算法原理函数的负梯度表示如下:搜索步长可调整ak,通常记为(第k次迭代 ... [详细]
  • Java高级工程师学习路径及面试准备指南
    本文基于一位朋友的PDF面试经验整理,涵盖了Java高级工程师所需掌握的核心知识点,包括数据结构与算法、计算机网络、数据库、操作系统等多个方面,并提供了详细的参考资料和学习建议。 ... [详细]
  • 本文探讨了在 Python 2.7 环境下,如何有效地对大量数据(如几百 KB 的字符串)进行加密和压缩,并确保能够准确无误地解密回原始数据。 ... [详细]
  • ACM经典书籍推荐
    本文介绍了几本在算法和计算机科学领域具有重要影响力的书籍,包括由Donald E. Knuth编著的《计算机程序设计艺术》第一卷,以及潘氏兄弟的数论经典教材等。这些书籍不仅是学习相关领域的宝贵资源,也是专业人士不可或缺的参考书。 ... [详细]
  • Linux内核中的内存反碎片技术解析
    本文深入探讨了Linux内核中实现的内存反碎片技术,包括其历史发展、关键概念如虚拟可移动区域以及具体的内存碎片整理策略。旨在为开发者提供全面的技术理解。 ... [详细]
  • 通过两幅详细的思维导图,全面解析Spring框架中应用的设计模式及其核心编程理念。 ... [详细]
  • 本文详细探讨了 Android Service 组件中 onStartCommand 方法的四种不同返回值及其应用场景。Service 可以在后台执行长时间的操作,无需提供用户界面,支持通过启动和绑定两种方式创建。 ... [详细]
  • 苹果官方在线商店(中国)提供了关于MacBook Pro的详细信息。通过先进的工厂校准技术,新MacBook Pro能够精确地适应多种色彩空间标准,如sRGB、BT.601、BT.709及P3-ST.2084(HDR),确保用户获得最佳视觉效果。 ... [详细]
author-avatar
学渣小小柱
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有