热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

浅谈pytorch中stack和cat的及to_tensor的坑

这篇文章主要介绍了pytorch中stack和cat的及to_tensor的坑,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完

浅谈pytorch中stack和cat的及to_tensor的坑

初入计算机视觉遇到的一些坑

1.pytorch中转tensor

x=np.random.randint(10,100,(10,10,10))
x=TF.to_tensor(x)
print(x)

这个函数会对输入数据进行自动归一化,比如有时候我们需要将0-255的图片转为numpy类型的数据,则会自动转为0-1之间

2.stack和cat之间的差别

stack

x=torch.randn((1,2,3))
y=torch.randn((1,2,3))
z=torch.stack((x,y))#默认dim=0
print(z.shape)
#torch.Size([2, 1, 2, 3])

所以stack的之后的数据也就很好理解了,z[0,...]的数据是x,z[1,...]的数据是y。

cat

z=torch.cat((x,y))
print(z.size())
#torch.Size([2, 2, 3])

cat之后的数据 z[0,:,:]是x的值,z[1,:,:]是y的值。

其中最关键的是stack之后的数据的size会多出一个维度,而cat则不会,有一个很简单的例子来说明一下,比如要训练一个检测模型,label是一些标记点,eg:[x1,y1,x2,y2]

送入网络的加上batchsize则时Size:[batchsize,4],如果我已经有了两堆数据,data1:Size[128,4],data2:Size[128,4],需要将这两个数据合在一起的话目标data:Size[256,4]。

显然我们要做的是:torch.cat((data1,data2))

如果我们的数据是这样:有100个label,每一个label被放进一个list(data)中,[[x1,y1,x2,y2],[x1,y1,x2,y2],...]其中data是一个list长度为100,而list中每一个元素是张图片的标签,size为[4]我们需要将他们合一起成为一Size:[100,4]的的数据。

显然我们要做的是torch.stack(data)。而且torch.stack的输入参数为list类型!

补充:pytorch中的cat、stack、tranpose、permute、unsqeeze

pytorch中提供了对tensor常用的变换操作。

cat 连接

对数据沿着某一维度进行拼接。cat后数据的总维数不变。

比如下面代码对两个2维tensor(分别为2*3,1*3)进行拼接,拼接完后变为3*3还是2维的tensor。

代码如下:

import torch
torch.manual_seed(1)
x = torch.randn(2,3)
y = torch.randn(1,3)
print(x,y)

结果:

0.6614 0.2669 0.0617
0.6213 -0.4519 -0.1661
[torch.FloatTensor of size 2x3]

-1.5228 0.3817 -1.0276
[torch.FloatTensor of size 1x3]

将两个tensor拼在一起:

torch.cat((x,y),0)

结果:

0.6614 0.2669 0.0617
0.6213 -0.4519 -0.1661
-1.5228 0.3817 -1.0276
[torch.FloatTensor of size 3x3]

更灵活的拼法:

torch.manual_seed(1)
x = torch.randn(2,3)
print(x)
print(torch.cat((x,x),0))
print(torch.cat((x,x),1))

结果

// x
0.6614 0.2669 0.0617
0.6213 -0.4519 -0.1661
[torch.FloatTensor of size 2x3]

// torch.cat((x,x),0)
0.6614 0.2669 0.0617
0.6213 -0.4519 -0.1661
0.6614 0.2669 0.0617
0.6213 -0.4519 -0.1661
[torch.FloatTensor of size 4x3]

// torch.cat((x,x),1)
0.6614 0.2669 0.0617 0.6614 0.2669 0.0617
0.6213 -0.4519 -0.1661 0.6213 -0.4519 -0.1661
[torch.FloatTensor of size 2x6]

stack,增加新的维度进行堆叠

而stack则会增加新的维度。

如对两个1*2维的tensor在第0个维度上stack,则会变为2*1*2的tensor;在第1个维度上stack,则会变为1*2*2的tensor。

见代码:

a = torch.ones([1,2])
b = torch.ones([1,2])
c= torch.stack([a,b],0) // 第0个维度stack

输出:

(0 ,.,.) =
1 1

(1 ,.,.) =
1 1
[torch.FloatTensor of size 2x1x2]

c= torch.stack([a,b],1) // 第1个维度stack

输出:


(0 ,.,.) =

1 1

1 1

[torch.FloatTensor of size 1x2x2]

transpose ,两个维度互换

代码如下:

torch.manual_seed(1)
x = torch.randn(2,3)
print(x)

原来x的结果:

0.6614 0.2669 0.0617

0.6213 -0.4519 -0.1661

[torch.FloatTensor of size 2x3]

将x的维度互换

x.transpose(0,1)

结果

0.6614 0.6213

0.2669 -0.4519

0.0617 -0.1661

[torch.FloatTensor of size 3x2]

permute,多个维度互换,更灵活的transpose

permute是更灵活的transpose,可以灵活的对原数据的维度进行调换,而数据本身不变。

代码如下:

x = torch.randn(2,3,4)
print(x.size())
x_p = x.permute(1,0,2) # 将原来第1维变为0维,同理,0→1,2→2
print(x_p.size())

结果:

torch.Size([2, 3, 4])

torch.Size([3, 2, 4])

squeeze 和 unsqueeze

常用来增加或减少维度,如没有batch维度时,增加batch维度为1。

squeeze(dim_n)压缩,减少dim_n维度 ,即去掉元素数量为1的dim_n维度。

unsqueeze(dim_n),增加dim_n维度,元素数量为1。

上代码:

# 定义张量
import torch

b = torch.Tensor(2,1)
b.shape
Out[28]: torch.Size([2, 1])

# 不加参数,去掉所有为元素个数为1的维度
b_ = b.squeeze()
b_.shape
Out[30]: torch.Size([2])

# 加上参数,去掉第一维的元素为1,不起作用,因为第一维有2个元素
b_ = b.squeeze(0)
b_.shape 
Out[32]: torch.Size([2, 1])

# 这样就可以了
b_ = b.squeeze(1)
b_.shape
Out[34]: torch.Size([2])

# 增加一个维度
b_ = b.unsqueeze(2)
b_.shape
Out[36]: torch.Size([2, 1, 1])

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程笔记。


推荐阅读
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 视觉Transformer综述
    本文综述了视觉Transformer在计算机视觉领域的应用,从原始Transformer出发,详细介绍了其在图像分类、目标检测和图像分割等任务中的最新进展。文章不仅涵盖了基础的Transformer架构,还深入探讨了各类增强版Transformer模型的设计思路和技术细节。 ... [详细]
  • Python3爬虫入门:pyspider的基本使用[python爬虫入门]
    Python学习网有大量免费的Python入门教程,欢迎大家来学习。本文主要通过爬取去哪儿网的旅游攻略来给大家介绍pyspid ... [详细]
  • OBS Studio自动化实践:利用脚本批量生成录制场景
    本文探讨了如何利用OBS Studio进行高效录屏,并通过脚本实现场景的自动生成。适合对自动化办公感兴趣的读者。 ... [详细]
  • 问题场景用Java进行web开发过程当中,当遇到很多很多个字段的实体时,最苦恼的莫过于编辑字段的查看和修改界面,发现2个页面存在很多重复信息,能不能写一遍?有没有轮子用都不如自己造。解决方式笔者根据自 ... [详细]
  • 本文介绍了如何利用Python中的Matplotlib库来绘制三维点云数据,并展示其外接的最大边界框。通过具体代码示例,帮助读者理解点云数据的可视化方法。 ... [详细]
  • 关于进程的复习:#管道#数据的共享Managerdictlist#进程池#cpu个数1#retmap(func,iterable)#异步自带close和join#所有 ... [详细]
  • 本文详细介绍如何安装和配置DedeCMS的移动端站点,包括新版本安装、老版本升级、模板适配以及必要的代码修改,以确保移动站点的正常运行。 ... [详细]
  • 本文详细探讨了在Java中如何将图像对象转换为文件和字节数组(Byte[])的技术。虽然网络上存在大量相关资料,但实际操作时仍需注意细节。本文通过使用JMSL 4.0库中的图表对象作为示例,提供了一种实用的方法。 ... [详细]
  • 本文详细介绍了 `org.apache.tinkerpop.gremlin.structure.VertexProperty` 类中的 `key()` 方法,并提供了多个实际应用的代码示例。通过这些示例,读者可以更好地理解该方法在图数据库操作中的具体用途。 ... [详细]
  • 二维码的实现与应用
    本文介绍了二维码的基本概念、分类及其优缺点,并详细描述了如何使用Java编程语言结合第三方库(如ZXing和qrcode.jar)来实现二维码的生成与解析。 ... [详细]
  • Requests库的基本使用方法
    本文介绍了Python中Requests库的基础用法,包括如何安装、GET和POST请求的实现、如何处理Cookies和Headers,以及如何解析JSON响应。相比urllib库,Requests库提供了更为简洁高效的接口来处理HTTP请求。 ... [详细]
  • 本文详细介绍了如何利用 Bootstrap Table 实现数据展示与操作,包括数据加载、表格配置及前后端交互等关键步骤。 ... [详细]
  • 管理UINavigationController中的手势返回 - Managing Swipe Back Gestures in UINavigationController
    本文介绍了如何在一个简单的闪存卡片应用中实现平滑的手势返回功能,以增强用户体验。 ... [详细]
  • 使用Echarts for Weixin 小程序实现中国地图及区域点击事件
    本文介绍了如何使用Echarts for Weixin在微信小程序中构建中国地图,并实现区域点击事件。包括效果展示、条件准备和逻辑实现的具体步骤。 ... [详细]
author-avatar
xxyy
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有