热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

浅谈numpy中dot()函数的计算方式

这篇文章主要介绍了浅谈numpy中dot()函数的计算方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

如下所示:

a = np.arange(1, 5).reshape(2, 2)
b = np.arange(2, 6).reshape(2, 2)
c = a * b
dot = np.dot(a, b)
print(a)
print(b)
print(c)
print(dot)

打印出a

[[1 2]

[3 4]]

打印出b

[[2 3]

[4 5]]

a * b 每个相对位置的数值相乘1*2=2,2*3=6,3*4=12,4*5=20.比较简单,自己脑补一下

[[ 2 6]

[12 20]]

a.dot(b)也可以下成下面的那种形式,看你喜欢了.关键是算法

np.dot(a,b)

[[10 13]

[22 29]]

10=1*2+2*4 a[1][1]*b[1][1]+a[1][2]*b[2][1]

13=1*3+2*5

22=3*2+4*4

29=3*3+4*5 a[2][1]*b[1][2]+a[2][2]*b[2][2]

就这样了,规律自己找~

补充:Numpy矩阵乘积函数(dot)运算规则解析

np.dot(A, B)

A为二维m*n的举证,B必须为n*l的矩阵,l两个矩阵的n必须一致,也就是说A有多少列,B就必须有多少行,否则无法运算。结果得到m*l的矩阵

m*l = np.dot(m*n,n*l),m n l指维度,得到m*l的矩阵

运算顺序如下图:

程序演示如下:

import numpy as np
A = [[1, 2, 3], [4, 5, 6]]
B = [[3, 2], [4, 3], [4, 3]]
print(np.dot(A, B))

结果:

[[23 17]

[56 41]]

如果A和B的形状交换会怎么样呢?

import numpy as np
A = [[1, 2, 3], [4, 5, 6]]
B = [[3, 2], [4, 3], [4, 3]]
print(np.dot(B, A))

结果是这样哟!不是说形状一定是变小哟

[[11 16 21]

[16 23 30]

[16 23 30]]

这是A和B的形状不一样:

import numpy as np
A = [[1, 2, 3], [4, 5, 6]]
B = [[3], [4], [4]]
print(np.dot(A, B))

结果如下:

[[23]

[56]]

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。


推荐阅读
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 网络攻防实战:从HTTP到HTTPS的演变
    本文通过一系列日记记录了从发现漏洞到逐步加强安全措施的过程,探讨了如何应对网络攻击并最终实现全面的安全防护。 ... [详细]
  • 本文深入探讨了Linux系统中网卡绑定(bonding)的七种工作模式。网卡绑定技术通过将多个物理网卡组合成一个逻辑网卡,实现网络冗余、带宽聚合和负载均衡,在生产环境中广泛应用。文章详细介绍了每种模式的特点、适用场景及配置方法。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 深度学习理论解析与理解
    梯度方向指示函数值增加的方向,由各轴方向的偏导数综合而成,其模长表示函数值变化的速率。本文详细探讨了导数、偏导数、梯度等概念,并结合Softmax函数、卷积神经网络(CNN)中的卷积计算、权值共享及池化操作进行了深入分析。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 自学编程与计算机专业背景者的差异分析
    本文探讨了自学编程者和计算机专业毕业生在技能、知识结构及职业发展上的不同之处,结合实际案例分析两者的优势与劣势。 ... [详细]
  • 2023年京东Android面试真题解析与经验分享
    本文由一位拥有6年Android开发经验的工程师撰写,详细解析了京东面试中常见的技术问题。涵盖引用传递、Handler机制、ListView优化、多线程控制及ANR处理等核心知识点。 ... [详细]
  • 深入浅出:Google工程师的算法学习指南
    通过Google工程师的专业视角,带你系统掌握算法的核心概念与实践技巧。 ... [详细]
  • 本文深入探讨了 Python 列表切片的基本概念和实际应用,通过具体示例展示了不同切片方式的使用方法及其背后的逻辑。 ... [详细]
  • 本文详细介绍了K-Medoids聚类算法,这是一种基于划分的聚类方法,适用于处理大规模数据集。文章探讨了其优点、缺点以及具体实现步骤,并通过实例进行说明。 ... [详细]
  • 本文探讨如何利用人工智能算法自动区分网页是详情页还是列表页,介绍具体的实现思路和技术细节。 ... [详细]
  • 本文探讨了 C++ 中普通数组和标准库类型 vector 的初始化方法。普通数组具有固定长度,而 vector 是一种可扩展的容器,允许动态调整大小。文章详细介绍了不同初始化方式及其应用场景,并提供了代码示例以加深理解。 ... [详细]
  • 本实验主要探讨了二叉排序树(BST)的基本操作,包括创建、查找和删除节点。通过具体实例和代码实现,详细介绍了如何使用递归和非递归方法进行关键字查找,并展示了删除特定节点后的树结构变化。 ... [详细]
author-avatar
ude816
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有