热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

浅谈Pytorch中的自动求导函数backward()所需参数的含义

今天小编就为大家分享一篇浅谈Pytorch中的自动求导函数backward()所需参数的含义,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

正常来说backward( )函数是要传入参数的,一直没弄明白backward需要传入的参数具体含义,但是没关系,生命在与折腾,咱们来折腾一下,嘿嘿。

对标量自动求导

首先,如果out.backward()中的out是一个标量的话(相当于一个神经网络有一个样本,这个样本有两个属性,神经网络有一个输出)那么此时我的backward函数是不需要输入任何参数的。

import torch
from torch.autograd import Variable
 
a = Variable(torch.Tensor([2,3]),requires_grad=True)
b = a + 3
c = b * 3
out = c.mean()
out.backward()
print('input:')
print(a.data)
print('output:')
print(out.data.item())
print('input gradients are:')
print(a.grad)

运行结果:

不难看出,我们构建了这样的一个函数:

所以其求导也很容易看出:

这是对其进行标量自动求导的结果.

对向量自动求导

如果out.backward()中的out是一个向量(或者理解成1xN的矩阵)的话,我们对向量进行自动求导,看看会发生什么?

先构建这样的一个模型(相当于一个神经网络有一个样本,这个样本有两个属性,神经网络有两个输出):

import torch
from torch.autograd import Variable
 
a = Variable(torch.Tensor([[2.,4.]]),requires_grad=True)
b = torch.zeros(1,2)
b[0,0] = a[0,0] ** 2 
b[0,1] = a[0,1] ** 3 
out = 2 * b
#其参数要传入和out维度一样的矩阵
out.backward(torch.FloatTensor([[1.,1.]]))
print('input:')
print(a.data)
print('output:')
print(out.data)
print('input gradients are:')
print(a.grad)

模型也很简单,不难看出out求导出来的雅克比应该是:

因为a1 = 2,a2 = 4,所以上面的矩阵应该是:

运行的结果:

嗯,的确是8和96,但是仔细想一想,和咱们想要的雅克比矩阵的形式也不一样啊。难道是backward自动把0给省略了?

咱们继续试试,这次在上一个模型的基础上进行小修改,如下:

import torch
from torch.autograd import Variable
 
a = Variable(torch.Tensor([[2.,4.]]),requires_grad=True)
b = torch.zeros(1,2)
b[0,0] = a[0,0] ** 2 + a[0,1] 
b[0,1] = a[0,1] ** 3 + a[0,0]
out = 2 * b
#其参数要传入和out维度一样的矩阵
out.backward(torch.FloatTensor([[1.,1.]]))
print('input:')
print(a.data)
print('output:')
print(out.data)
print('input gradients are:')
print(a.grad)

可以看出这个模型的雅克比应该是:

运行一下:

等等,什么鬼?正常来说不应该是

么?我是谁?我再哪?为什么就给我2个数,而且是 8 + 2 = 10 ,96 + 2 = 98 。难道都是加的 2 ?想一想,刚才咱们backward中传的参数是 [ [ 1 , 1 ] ],难道安装这个关系对应求和了?咱们换个参数来试一试,程序中只更改传入的参数为[ [ 1 , 2 ] ]:

import torch
from torch.autograd import Variable
 
a = Variable(torch.Tensor([[2.,4.]]),requires_grad=True)
b = torch.zeros(1,2)
b[0,0] = a[0,0] ** 2 + a[0,1] 
b[0,1] = a[0,1] ** 3 + a[0,0]
out = 2 * b
#其参数要传入和out维度一样的矩阵
out.backward(torch.FloatTensor([[1.,2.]]))
print('input:')
print(a.data)
print('output:')
print(out.data)
print('input gradients are:')
print(a.grad)

嗯,这回可以理解了,我们传入的参数,是对原来模型正常求导出来的雅克比矩阵进行线性操作,可以把我们传进的参数(设为arg)看成一个列向量,那么我们得到的结果就是:

在这个题目中,我们得到的实际是:

看起来一切完美的解释了,但是就在我刚刚打字的一刻,我意识到官方文档中说k.backward()传入的参数应该和k具有相同的维度,所以如果按上述去解释是解释不通的。哪里出问题了呢?

仔细看了一下,原来是这样的:在对雅克比矩阵进行线性操作的时候,应该把我们传进的参数(设为arg)看成一个行向量(不是列向量),那么我们得到的结果就是:

也就是:

这回我们就解释的通了。

现在我们来输出一下雅克比矩阵吧,为了不引起歧义,我们让雅克比矩阵的每个数值都不一样(一开始分析错了就是因为雅克比矩阵中有相同的数据),所以模型小改动如下:

import torch
from torch.autograd import Variable
 
a = Variable(torch.Tensor([[2.,4.]]),requires_grad=True)
b = torch.zeros(1,2)
b[0,0] = a[0,0] ** 2 + a[0,1] 
b[0,1] = a[0,1] ** 3 + a[0,0] * 2
out = 2 * b
#其参数要传入和out维度一样的矩阵
out.backward(torch.FloatTensor([[1,0]]),retain_graph=True)
A_temp = copy.deepcopy(a.grad)
a.grad.zero_()
out.backward(torch.FloatTensor([[0,1]]))
B_temp = a.grad
print('jacobian matrix is:')
print(torch.cat( (A_temp,B_temp),0 ))

如果没问题的话咱们的雅克比矩阵应该是 [ [ 8 , 2 ] , [ 4 , 96 ] ]

好了,下面是见证奇迹的时刻了,不要眨眼睛奥,千万不要眨眼睛… 3 2 1 砰…

好了,现在总结一下:因为经过了复杂的神经网络之后,out中每个数值都是由很多输入样本的属性(也就是输入数据)线性或者非线性组合而成的,那么out中的每个数值和输入数据的每个数值都有关联,也就是说【out】中的每个数都可以对【a】中每个数求导,那么我们backward()的参数[k1,k2,k3…kn]的含义就是:

也可以理解成每个out分量对an求导时的权重。

对矩阵自动求导

现在,如果out是一个矩阵呢?

下面的例子也可以理解为:相当于一个神经网络有两个样本,每个样本有两个属性,神经网络有两个输出。

import torch
from torch.autograd import Variable
from torch import nn

a = Variable(torch.FloatTensor([[2,3],[1,2]]),requires_grad=True)
w = Variable( torch.zeros(2,1),requires_grad=True )
out = torch.mm(a,w)
out.backward(torch.FloatTensor([[1.],[1.]]),retain_graph=True)
print("gradients are:{}".format(w.grad.data))

如果前面的例子理解了,那么这个也很好理解,backward输入的参数k是一个2x1的矩阵,2代表的就是样本数量,就是在前面的基础上,再对每个样本进行加权求和。结果是:

如果有兴趣,也可以拓展一下多个样本的多分类问题,猜一下k的维度应该是【输入样本的个数 * 分类的个数】

好啦,纠结我好久的pytorch自动求导原理算是彻底搞懂啦~~~

以上这篇浅谈Pytorch中的自动求导函数backward()所需参数的含义就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


推荐阅读
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 如何用GPU服务器运行Python
    如何用GPU服务器运行Python-目录前言一、服务器登录1.1下载安装putty1.2putty远程登录 1.3查看GPU、显卡常用命令1.4Linux常用命令二、 ... [详细]
  • 图神经网络模型综述
    本文综述了图神经网络(Graph Neural Networks, GNN)的发展,从传统的数据存储模型转向图和动态模型,探讨了模型中的显性和隐性结构,并详细介绍了GNN的关键组件及其应用。 ... [详细]
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • 目录预备知识导包构建数据集神经网络结构训练测试精度可视化计算模型精度损失可视化输出网络结构信息训练神经网络定义参数载入数据载入神经网络结构、损失及优化训练及测试损失、精度可视化qu ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 本文详细介绍了如何在Python和PyTorch环境中实现Tensor与NumPy数组之间的转换,以及PIL图像对象与NumPy数组之间的相互转换。内容包括具体的转换函数及其使用示例。 ... [详细]
  • 本文探讨了如何在Python中处理长数据的完全显示问题,包括numpy数组、pandas DataFrame以及tensor类型的完整输出设置。 ... [详细]
  • 如何更换Anaconda和pip的国内镜像源
    本文详细介绍了如何通过国内多个知名镜像站(如北京外国语大学、中国科学技术大学、阿里巴巴等)更换Anaconda和pip的源,以提高软件包的下载速度和安装效率。 ... [详细]
  • 尤洋:夸父AI系统——大规模并行训练的深度学习解决方案
    自从AlexNet等模型在计算机视觉领域取得突破以来,深度学习技术迅速发展。近年来,随着BERT等大型模型的广泛应用,AI模型的规模持续扩大,对硬件提出了更高的要求。本文介绍了新加坡国立大学尤洋教授团队开发的夸父AI系统,旨在解决大规模模型训练中的并行计算挑战。 ... [详细]
  • 对于初学者而言,搭建一个高效稳定的 Python 开发环境是入门的关键一步。本文将详细介绍如何利用 Anaconda 和 Jupyter Notebook 来构建一个既易于管理又功能强大的开发环境。 ... [详细]
  • 本文介绍了一种方法,通过使用Python的ctypes库来调用C++代码。具体实例为实现一个简单的加法器,并详细说明了从编写C++代码到编译及最终在Python中调用的全过程。 ... [详细]
  • 解决Jupyter Notebook 中无法找到 TensorFlow 的问题
    本文记录了解决 Jupyter Notebook 在特定环境中无法识别已安装的 TensorFlow 的方法。主要原因是 Jupyter 默认在 base 环境中运行,而 TensorFlow 可能在其他环境中。通过配置 Jupyter 使其能够访问目标环境中的 TensorFlow。 ... [详细]
  • 本文介绍了如何使用 Google Colab 的免费 GPU 资源进行深度学习应用开发。Google Colab 是一个无需配置即可使用的云端 Jupyter 笔记本环境,支持多种深度学习框架,并且提供免费的 GPU 计算资源。 ... [详细]
  • Python 中变量类型的确定与默认类型解析
    本文详细探讨了 Python 中变量类型的确定方式及其默认类型,帮助初学者更好地理解变量类型的概念。 ... [详细]
author-avatar
手机用户2602905005
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有