热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

前方车辆检测的常用方法

from:http:blog.csdn.netviewcodearticledetails20358367前方车辆检测,这里指的是基于车辆自身对象,而

from: http://blog.csdn.net/viewcode/article/details/20358367

前方车辆检测,这里指的是基于车辆自身对象,而不是公路交通部分的车辆检测。

前方车辆检测,可以用于防碰撞系统、进而用于自动巡航(ACC)等功能,应用场景广泛,所以,此技术是一项比较基础的技术。而先前的ACC,只是基于正前方车辆的检测,对于侧面的车辆或环境的跟踪能力有限。但随着各种传感器和导航地图的应用,ACC的能力也会大大增强。ACC只用于高速行驶状态,但已有低速跟车系统的研究,某公司已计划未来两年内上市。



1. 传感器

前方车辆检测,常用的传感器有高频雷达(毫米波)、红外激光雷达、摄像头。

每种传感器都有各自的优缺点:

雷达:自己可选用的波段有限,常用24G(厘米波)、79G波段。对雨雾天气的适应能力好,探测距离大150米,但容易受电磁干扰影响。据传,79G雷达技术对国内有限制的。而欧盟和我国的工信部是建议24G作为车载雷达波段。而美国是推荐79G波段作为车载雷达的使用波段。http://www.srrc.org.cn/NewsShow6038.aspx

红外激光:抗干扰能力强,定向性。但对于雨雾天气的穿透能力弱。且成本高。

摄像头:基于视觉的探测。对距离的判断较弱(单目视觉情况下),易受雨雾天气的影响。


所以,想适应各种场景,厂商一般会采用多种传感器收集信息。


这里重点总结下,基于单目视觉的车辆检测技术。

从视觉上来讲,车辆的形状、颜色和大小虽然限定在一定范围,但都是不固定的,而且,其外形会受到自身姿势和外部环境,如光照或旁边物体的影响。


2. 基于先验知识的特征检测

汽车有一些一些典型的特征, 如对称性、颜色、阴影、几何特征(如角点、边缘)、纹理、车灯。

1)对称性

汽车从前方和后方来看,无论是在区域面积还是边缘特征上,具有很好的对称性。

但是,对称性特征易受噪声的干扰,以及角度的影响。

2)颜色

颜色空间一般不直接使用在车辆上,而比较有效的手段是识别路面和车辆阴影。

3)阴影

车辆阴影是与车辆相关的一个重要的特征。因为车辆阴影一般比周围区域都要暗。但具体的参数指标,还与光照,即天气状况有关。

一般做法是采用两个阈值,一高、一低,低阈值用于确定阴影,而高阈值由阴影周围环境来确定,如局部分割算法,均值+方差。

4)角点

先检测出所有角点,然后再根据角点的空间关系,如汽车的四个角点会形成一个矩形,来筛选汽车。

5)垂直或水平边缘

一种方式,直接检测垂直边缘,利用类似直方图计算垂直投影。然后,车辆底盘下方阴影部分也是重要的水平边缘特征。

另外,也有采用多分辨率的方式,在每个层次都

边缘只是作为一种初步的筛选/搜索手段。

6)纹理

熵、共生矩阵都可被作为基于纹理的图像分割的基础。

7)车灯

主要是用于夜间车辆的探测。因为,以上特征在晚上基本都无效了。

8)基于运动的方法

以上其中都是空间特征。而基于运动的方法是对图像连续序列的分析。如光流法。

但光流法会消耗大量的计算资源,时间和空间。



3. 识别

无论是用遍历的方式,还是用特征筛选出的候选区域,对筛选出的子图像需要进一步识别,车辆还是非车辆。

1)基于模板的方法

采用简化过的车辆模板来筛选。

2)基于外观特征的方法

车辆VS非车辆 分类

二类分类问题,一般采用机器学习/模式识别的方法解决。

首先,需要大量的训练图片。

其次,选取合适的特征,如PCA,HOG,harris,haar wavelet feature, SIFT等

再次,选取分类器,如NN,svm等



4. 跟踪

车辆的跟踪的好处:

1)提前预测车辆出现的位置,减少车辆检测的搜索空间,节省计算时间。

2)区分多个车辆,每辆车都有各自的特征,如HOG,边缘,灰度密度等,使用这些特征,就可以区分不同类型的车辆。根据跟踪算法的结果,即使是同款车辆出现在同一场景,也能基本区分。


目前,常用的跟踪算法,有卡曼滤波算法。



5. 近几年热门的车辆检测方法

1)HOG 特征 + haar-like特征;SVM 或 adaboost  分类器; (HOG + SVM ; haar-like + adaboost 速度快)

2)光流法;或增加一个HMM分类器,或SVM分类器


--------------------------------------------


前方车辆检测技术,常见问题:

1. 选取那种分辨率来计算?

mobileye采用的是 640×480 或 752 * 480 彩色CMOS摄像头

2. 如何选取特征?

3. 如何跟踪?

4. 如何计算距离?

5. 如何计算前车速度?

6. 如何区分多个车辆?


--------------------------------------------


基于Haar和HoG特征的前车检测方法,其特征在于,包括以下步骤: 

步骤I)人工选取出大量车辆图片和非车辆图片作为训练集的正、负样本,并将正、负样本规格化到24 X 24像素下; 

步骤2)使用Haar特征和HoG特征分别对规格化后的每一幅正、负样本进行表征,形成特征向量; 

步骤3)针对Haar特征和HoG特征形成的两种特征向量分别构建弱分类器; 

步骤4)利用级联的Adaboost算法对弱分类器进行训练,得到级联车辆强分类器;

步骤5)针对车载摄像头获得的前方道路视频图像,将其中各种尺寸、各种位置的子图像输入级联车辆强分类器中进行判断。

也有利用改进的HOG特征值,和SVM训练,来对车辆进行识别


harr特征、hog特征(大量的正、负样本图片训练),利用adboost算法 进行训练、级联,形成强分类器

http://www.google.com/patents/CN102855500A?cl=zh



-------------------------

HOG特征的计算及一些改进:

HOG:histogram of oriented gradient, 方向梯度直方图,就是描述物体的形状和边缘特征,并且不涉及尺度和旋转。

1. 将子图像灰度化,归一化(为了除去光照和阴影的影响)

2. 划分成小cells,如3*3个像素块或6*6个像素块。

3. 计算每个cell中每个pixel的gradient方向,或者说是边缘的方向。

4. 统计每个cell的梯度直方图(不同梯度的个数),即可形成每个cell的descriptor。

5. 连接所有cell形成一个子图像的特征描述子。

6. 子图像之间是一般是由重叠的区域的,这样一个cell影响的就不是一个子图像了。一个矩形子图像,一般有三个参数:每个子图像有多少方格、每个方格有几个像素、以及每个方格直方图有多少頻道(梯度方向)。

由于人体轮廓在局部HOG归一化特征上有良好的稳定性,最初是用于人体检测。

在Dalal和Triggs的人检测实验中,发现最优的单元块划分是3x3或6x6个像素,同时直方图是9通道。


推荐阅读
  • H5技术实现经典游戏《贪吃蛇》
    本文将分享一个使用HTML5技术实现的经典小游戏——《贪吃蛇》。通过H5技术,我们将探讨如何构建这款游戏的两种主要玩法:积分闯关和无尽模式。 ... [详细]
  • 计算机学报精选论文概览(2020-2022)
    本文汇总了2020年至2022年间《计算机学报》上发表的若干重要论文,旨在为即将投稿的研究者提供参考。 ... [详细]
  • 本文将深入探讨 Unreal Engine 4 (UE4) 中的距离场技术,包括其原理、实现细节以及在渲染中的应用。距离场技术在现代游戏引擎中用于提高光照和阴影的效果,尤其是在处理复杂几何形状时。文章将结合具体代码示例,帮助读者更好地理解和应用这一技术。 ... [详细]
  • 对于初学者而言,搭建一个高效稳定的 Python 开发环境是入门的关键一步。本文将详细介绍如何利用 Anaconda 和 Jupyter Notebook 来构建一个既易于管理又功能强大的开发环境。 ... [详细]
  • 2023年,Android开发前景如何?25岁还能转行吗?
    近期,关于Android开发行业的讨论在多个平台上热度不减,许多人担忧其未来发展。本文将探讨当前Android开发市场的现状、薪资水平及职业选择建议。 ... [详细]
  • 本周三大青年学术分享会即将开启
    由雷锋网旗下的AI研习社主办,旨在促进AI领域的知识共享和技术交流。通过邀请来自学术界和工业界的专家进行在线分享,活动致力于搭建一个连接理论与实践的平台。 ... [详细]
  • 知识图谱与图神经网络在金融科技中的应用探讨
    本文详细介绍了融慧金科AI Lab负责人张凯博士在2020爱分析·中国人工智能高峰论坛上的演讲,探讨了知识图谱与图神经网络模型如何在金融科技领域发挥重要作用。 ... [详细]
  • AI炼金术:KNN分类器的构建与应用
    本文介绍了如何使用Python及其相关库(如NumPy、scikit-learn和matplotlib)构建KNN分类器模型。通过详细的数据准备、模型训练及新样本预测的过程,展示KNN算法的实际操作步骤。 ... [详细]
  • 深入解析WebP图片格式及其应用
    随着互联网技术的发展,无论是PC端还是移动端,图片数据流量占据了很大比重。尤其在高分辨率屏幕普及的背景下,如何在保证图片质量的同时减少文件大小,成为了亟待解决的问题。本文将详细介绍Google推出的WebP图片格式,探讨其在实际项目中的应用及优化策略。 ... [详细]
  • 高级缩放示例.就像谷歌地图一样.它仅缩放图块,但不缩放整个图像.因此,缩放的瓷砖占据了恒定的记忆,并且不会为大型缩放图像调整大小的图像.对于简化的缩放示例lookhere.在Win ... [详细]
  • 小编给大家分享一下Vue3中如何提高开发效率,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获, ... [详细]
  • 深入解析层次聚类算法
    本文详细介绍了层次聚类算法的基本原理,包括其通过构建层次结构来分类样本的特点,以及自底向上(凝聚)和自顶向下(分裂)两种主要的聚类策略。文章还探讨了不同距离度量方法对聚类效果的影响,并提供了具体的参数设置指导。 ... [详细]
  • 提升移动应用用户体验的8个设计策略
    随着移动应用成为数字世界连接的关键桥梁,用户体验(UX)设计的重要性日益凸显。本文将探讨为何优质的UX设计对移动应用的成功至关重要,并分享8个实用的设计技巧,帮助开发者优化用户体验。 ... [详细]
  • 如何高效解决Android应用ANR问题?
    本文介绍了ANR(应用程序无响应)的基本概念、常见原因及其解决方案,并提供了实用的工具和技巧帮助开发者快速定位和解决ANR问题,提高应用的用户体验。 ... [详细]
  • 本文探讨了一种统一的语义数据模型,旨在支持物联网、建筑及企业环境下的数据转换。该模型强调简洁性和可扩展性,以促进不同行业间的插件化和互操作性。对于智能硬件开发者而言,这一模型提供了重要的参考价值。 ... [详细]
author-avatar
舞动青春的迪斯科舞厅
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有