热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python中的pandas库简介及其使用教程_python

pandas是用于数据挖掘的Python库,Pandas中常见的数据结构有Series和DateFrame两种方式,今天通过本文给大家讲解Python中的pandas库简介及其使用

pandas模块

pandas是一个强大的分析结构化数据的工具集;它的使用基础是Numpy(提供高性能的矩阵运算);用于数据挖掘和数据分析,同时也提供数据清洗功能。


  • 便捷的数据处理能力

  • 独特的数据结构

  • 读取文件方便

  • 封装了matplotlib的画图和numpy的计算

Pandas中常见的数据结构有两种:










SeriesDateFrame
类似一维数组的对象,类似多维数组/表格数组;每列数据可以是不同的类型;索引包括列索引和行索引。

Series



  • 构建Series:ser_obj = pd.Series(range(10))

  • 由索引和数据组成(索引在左<自动创建的>,数据在右)。

  • 获取数据和索引:ser_obj.index; ser_obj.values

  • 预览数据: ser_obj.head(n);ser_obj.tail(n)

DateFrame



  • 获取列数据:df_obj[col_idx]或df_obj.col_idx

  • 增加列数据:df_obj[new_col_idx] = data

  • 删除列:del df_obj[col_idx]

  • 按值排序:sort_values(by = “label_name”)

常用方法

















































































Count非NA值得数量
describe针对Series或各DataFrame列计算汇总统计
min\max计算最小值和最大值
argmin\argmax计算能够获取到最大值或最小值的索引位置
idxmin\idxmax计算能够获取到最小值和最大值的索引值
quantile计算样本的分位数(0-1)
sum值得总和
mean值得平均值
median值的算术中位数(50%分位数)
mad根据平均值计算平均绝对离差
var样本值得方差
std样本值得标准差
skew样本值的偏度(三阶距)
kurt样本值的峰度(四阶距)
cumsum样本值的累计和
cummin\cummax样本值的累计最大值和累计最小值
cumprod样本值的累计积
diff计算一阶差分(对时间序列很有用)
pct_change计算百分数变化

处理缺失数据



  • Dropna()丢弃缺失数据

  • Fillna()填充缺失数据

数据过滤

Df[filter_condition]依据filter_condition(条件)对Df(数据)进行过滤。

绘图功能


Plot(kind,x,y,title,figsize)
Kind(绘制什么形式的图),x(x轴内容),y(y轴内容),title(图标题),figsize(图大小)

保存图片:plt.savefig()

"The fool doth think he is wise, but the wise man knows himself to be a fool." --威廉·莎士比亚


推荐阅读
  • 使用R语言进行Foodmart数据的关联规则分析与可视化
    本文探讨了如何利用R语言中的arules和arulesViz包对Foodmart数据集进行关联规则的挖掘与可视化。文章首先介绍了数据集的基本情况,然后逐步展示了如何进行数据预处理、规则挖掘及结果的图形化呈现。 ... [详细]
  • Python库在GIS与三维可视化中的应用
    Python库极大地扩展了GIS的能力,使其能够执行复杂的数据科学任务。本文探讨了几个关键的Python库,这些库不仅增强了GIS的核心功能,还推动了地理信息系统向更高层次的应用发展。 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • Python处理Word文档的高效技巧
    本文详细介绍了如何使用Python处理Word文档,涵盖从基础操作到高级功能的各种技巧。我们将探讨如何生成文档、定义样式、提取表格数据以及处理超链接和图片等内容。 ... [详细]
  • 虽然SQL因其直观易学的语法受到广泛欢迎,但转向Pandas进行数据处理时,初学者可能会感到不适应。本文旨在通过一系列实例,展示如何在Pandas中实现类似SQL的数据查询功能。 ... [详细]
  • 掌握Python岗位,你需要了解的关键技能
    最近,在社交平台脉脉上,一条关于Python岗位的消息引起了广泛关注。本文将探讨Python岗位的实际价值,并深入解析阿里巴巴等大公司在面试Python开发者时常见的问题。 ... [详细]
  • 扫描线三巨头 hdu1928hdu 1255  hdu 1542 [POJ 1151]
    学习链接:http:blog.csdn.netlwt36articledetails48908031学习扫描线主要学习的是一种扫描的思想,后期可以求解很 ... [详细]
  • 深入剖析 DEX 赛道:从 60 大头部项目看五大趋势
    本文通过分析 60 大头部去中心化交易平台(DEX),揭示了当前 DEX 赛道的五大发展趋势,包括市场集中度、跨链协议、AMM+NFT 结合、新公链崛起以及稳定币和衍生品交易的增长潜力。 ... [详细]
  • 本文介绍如何利用 Python 的 Pandas 库中的 PeriodIndex 属性来获取指定日期范围内的每个月份的天数。 ... [详细]
  • 探索Python编程的价值与应用
    本文探讨了学习Python的重要性和广泛的应用场景,从个人技能提升到职业发展的多个方面进行了详细解析。 ... [详细]
  • 大数据核心技术解析
    本文深入探讨了大数据技术的关键领域,包括数据的收集、预处理、存储管理、以及分析挖掘等方面,旨在提供一个全面的技术框架理解。 ... [详细]
  • 构建基于Python的用户画像系统
    用户画像在现代企业运营中扮演着重要角色,尤其在大数据分析和精准营销领域。本文旨在介绍用户画像的基础概念及其重要性,并通过Python编程语言实现一个基础的用户画像系统。 ... [详细]
  • 【转】强大的矩阵奇异值分解(SVD)及其应用
    在工程实践中,经常要对大矩阵进行计算,除了使用分布式处理方法以外,就是通过理论方法,对矩阵降维。一下文章,我在 ... [详细]
author-avatar
手机用户2502934787
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有