热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python学习笔记之装饰器_python

这篇文章主要介绍了Python装饰器的相关资料,文中讲解非常细致,代码帮助大家更好的理解和学习,感

一. 什么是装饰器

知乎某大佬如是说:内裤可以用来遮羞,但是到了冬天它没法为我们防风御寒,聪明的人们发明了长裤,有了长裤后宝宝再也不冷了,装饰器就像我们这里说的长裤,在不影响内裤作用的前提下,给我们的身子提供了保暖的功效。
装饰器本质上是Python函数,可以为已存在的对象添加额外的功能,同时装饰器还可以抽离出与函数无关的重用代码。具体应用场景如:插入日志、性能测试、事务处理、缓存、权限校验等。

换言之

装饰器不能影响原函数的功能,装饰器是独立出来的函数。谁调用它,谁就可以使用它的功能。

二.举个栗子

add的功能是计算x和y的值,我们称作功能函数。
logger的作业是在执行add函数的同时再打印了其他的信息,这部分的作为add的功能增强,我们称为装饰。
在logger里我们可以加入其他类似的功能函数,也能包装它,可以进行复用。

1.引子

#功能函数
def add(x,y):
 return x+y

#装饰函数
def logger(fn):
 print('frist')
 x = fn(4,5)
 print('second')
 return x 

print(logger(add))

#把函数add传给logger ,return x+y
#print('frist')
#print('secend')
# x = fn(4,5) ==> x = 4 y= 5 x= 4+5 = 9 
#return 9 

frist
second
9

2.提取参数

x,y的参数都放在logger函数内部了,影响函数的灵活性,此处我们可以提取出来。

def add(x,y):
 return x + y

def logger(fn,*args,**kwargs):
 print('frist')
 x = fn(*args,**kwargs)
 print('second')
 return x

print(logger(add,1,y=11))

frist
second
12

3.柯里化

def add(x,y):
 return x + y
def logger(fn):
 def wrapper(*args,**kwargs):
  print('begin')
  x = fn(*args,**kwargs)
  print('end')
  return x
 return wrapper


print(logger(add)(5,y=11))

begin
end
16

懵逼ing

以下为个人理解,左边为非柯里化函数,右边是柯里化函数。

柯里化函数

前面说过柯里化的定义,本来可以一次传入两个参数,柯里化之后。只需要传入一个函数了。。
左边传入add 和 两个参数。
右边的logger(add)是一个函数,只需要传入两个参数。logger(add)是个整体,结合成一个函数。当然这样写,我们看函数主题的部分也是不一样的。
函数的基础中说过,函数的传参必须和函数参数的定义一致。重点分析右边函数(柯里化)。
参数部分:参数传入的方式,logger函数需要传入个fn,fu的返回值是wrapper函数,wrapper函数的参数是(*args,**kwargs)所以此次就需要分两次传入参数。
第一次传入fn,再次传入wrapper函数需要的参数。所以就出现了最下边的调用方式。
print(logger(add)(5,y=50))。

返回值部分:右侧的logger函数是个嵌套函数,logger的返回值是wrapper,内层的wrapper函数返回值是x,x = fn(*args,**kwargs)。fn函数是最后调用时候传入的add函数。

懵逼 X 2。。。。

def add(x,y):
 return x + y

def logger(fn,*args,**kwargs):  def logger(fn): #参数剥离
           def newfunction(*args,**kwargs): #新定义一个函数,logger函数返回也是这个函数名字
 print('frist')       print('frist')
 x = fn(*args,**kwargs) == >    x = fn(*args,**kwargs)
 print('second')       print('second')
 return x        return x
          return newfunction

print(logger(add,1,y=11))   print(logger(add)(5,y=11)) #两次传入参数

效果如下:

def add(x,y):
 return x + y

def logger(fn): #参数剥离
 def newfunction(*args,**kwargs): #新定义一个函数,logger函数返回也是这个函数名字

  print('frist')
  x = fn(*args,**kwargs)
  print('second')
  return x

 return newfunction

print(logger(add)(5,y=11)) #两次传入参数

frist
second
16

继续懵逼的话就这样用吧。。。用多了就悟道了。。

4.装饰器语法糖

#再次变形。。。
def add(x,y):
 return x + y

def logger(fn):
 def wrapper(*args,**kwargs):
  print('begin')
  x = fn(*args,**kwargs)
  print('end')
  return x
 return wrapper

##调用方法1:
print(logger(add)(x=1111,y=1))

##调用方法2:
add = logger(add)
print(add(x=11,y=3))

##调用方法3: python给我们的语法糖 

@logger # 说明下边的函数,add 其实是 add = logger(add)
def add(x,y):
 return x + y


print(add(45,40))

begin
end
1112
begin
end
14
begin
end
85

三.复杂的栗子

import datetime
import time 

def logger(fn):
 def warp(*arges,**kwarges):
  print("arges={},kwarges={}".format(arges,kwarges)) #打印函数的两个参数
  start = datetime.datetime.now() #获取函数运行的开始时间
  ret = fn(*arges,**kwarges) #传入两个参数,调用add函数 此处有个return的值,需要一层一层的返回出去

  duratime = datetime.datetime.now() - start #获得函数的运行时间
  print("function {} took {}s".format(fn.__name__,duratime.total_seconds())) #打印函数的运行时间

  return ret #返回fn的结果 ,fn = x+y ==> 返回x+y的值。 x = 4 y= 11 ==> return 11
 return warp #返回warp的 return ==> ret 的return ==> return 11 函数的最终结果为11 

@logger
def add(x,y):
 print("oooooook")
 time.sleep(1.5)
 return x+y

print(add(4,y=11))

#如果充分理解了每个小部件,这个简单的完整版本也是很好理解的了。
#1,logger是个装饰器,而且使用了柯里化技术
#2,add 传参给logger的fn 形参,add(4,y=5)的两个参数传入给warp函数的两个形参
#
#
arges=(4,),kwarges={'y': 11}
oooooook
function add took 1.5017s
15

再次翻译

import datetime
import time 

#####################################装饰开始############################################
def logger(fn): #拿到函数名称
 def warp(*arges,**kwarges): #拿到函数带过来的参数开始装饰
  print("arges={},kwarges={}".format(arges,kwarges)) #来试试打印两个参数
  start = datetime.datetime.now() #
  ret = fn(*arges,**kwarges) # 此处调用add函数。开始执行函数,发现return语句。。ret的结果就是return。 

  duratime = datetime.datetime.now() - start #
  print("function {} took {}s".format(fn.__name__,duratime.total_seconds()))

  return ret #加工完成开始返回。warp的返回值是ret ,ret的返回值是 add函数的执行结果(原函数的功能完整的保留了) 
 return warp # logger的返回结果是warp,warp的返回值是ret ,ret的返回值是 add函数的执行结果(原函数的功能完整的保留了) 

#####################################装饰完成############################################

@logger #装饰工厂
######add是需要被装饰的函数,当你有这个想法的事情,其实事情已经开始发生了。
def add(x,y): # 此时add = logger(add) 此处前面的@logger标记就是想要让logger装饰器像一个工厂一样对add函数进行加工。
 print("oooooook")
 time.sleep(1.5)
 return x+y

print(add(4,y=11))
arges=(4,),kwarges={'y': 11}
oooooook
function add took 1.501604s
15

四.带参装饰器

1. 文档字符串

我们约定,在python函数的第一行需要对函数进行说明,使用三引号表示。
如果是英文说明,惯例首字母大写,第一行写概述,空一行,第三行写详细描述。
如果函数中有文档字符串,默认会放在函数的doc属性中,可以直接访问。

def add(x,y):
 """This is a function of addition"""
 a = x+y
 return x + y

print("function name is {}
function doc = {}

".format(add.__name__, add.__doc__))
print(help(add))
function name is add
function doc = This is a function of addition


Help on function add in module __main__:

add(x, y)
 This is a function of addition

None

2. 前面装饰器的副作用

前面装饰器基本上已经可以完成对函数进行加强的功能了,但是还有些瑕疵。比如原来函数的原属性已经被替换为装饰器的属性了。如下:

def add(x,y):
 return x + y

def logger(fn):
 "This is logger doc"
 def wrapper(*args,**kwargs):
  "This is wrapper doc"
  print('begin')
  x = fn(*args,**kwargs)
  print('end')
  return x
 return wrapper


@logger # add = logger(add)
def add(x,y):
 "This is add doc "
 print("name = {}
doc = {}".format(add.__name__,add.__doc__))
 return x + y


print(add(45,40))

#可以看出来add被装饰出来的函数(新的add)的属性已经全部改变了。

begin
name = wrapper
doc = This is wrapper doc
end
85

3. 解决方案一

三个函数:

第一个:copy原函数的属性 copy_properties
第二个:装饰器 logger
第三个:功能函数 add

def copy_properties(src, dst): # 把src的相关属性赋值给dst (fn,wrap)
 dst.__name__ = src.__name__
 dst.__doc__ = src.__doc__


def logger(fn):
 """'This is a function of logger'"""
 def wrap(*arges,**kwarges): # 
  """'This is a function of wrap'"""
  print('<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>')
  x = fn(*arges,**kwarges)
  #print("name={}
doc={}".format(add.__name__,add.__doc__))
  print('<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>') 
  return x 
 copy_properties(fn,wrap) #思考1:为什么放在这个位置调用
 return wrap

@logger
def add(x,y):
  """'This is a function of add'"""
  print("name={}
doc={}".format(add.__name__,add.__doc__))
  return x+y


print(add(4,6))

<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>
name=add
doc='This is a function of add'
<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>
10

4. 解决方案二

但凡使用装饰器都会出现属性的这个问题,为什么不把copy_properties也做成装饰器呢?

三个函数:

第一个:copy原函数的装饰器 copy_properties1
第二个:装饰器 logger
第三个:功能函数 add

def copy_properties(src, dst): # 把src的相关属性赋值给dst (fn,wrap)
 dst.__name__ = src.__name__
 dst.__doc__ = src.__doc__

#利用前面的知识我们可以对copy_properties轻松进行变形
def copy_properties1(src): # 把src的相关属性赋值给dst (fn,wrap) 
 def _copy(dst):
  dst.__name__ = src.__name__
  dst.__doc__ = src.__doc__
  return dst 
 return _copy

带参装饰器:

def logger(fn): 
 """'This is a function of logger'"""
 @copy_properties1(fn) #wrap = copy_properties(fn)(wrap) 
 #== > 柯里化 两次传入参数 src = fn , dst = wrap 新的wrap函数的属性已经替换为原函数的。

 def wrap(*arges,**kwarges): #wrap = copy_properties(fn)(wrap)(*arges,**kwarges)  
  """'This is a function of wrap'"""
  print('>->->->->->->->->->->->->->->->->->->->->->->->->->')
  x = fn(*arges,**kwarges)
  print('<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<')
  return x 

 return wrap

@logger #add =logger(add)
def add(x,y):
  """'This is a function of add'"""
  print("name={}
doc={}".format(add.__name__,add.__doc__))
  return x+y



print(add(4,11))

推荐阅读
  • Logback使用小结
    1一定要使用slf4j的jar包,不要使用apachecommons的jar。否则滚动生成文件不生效,不滚动的时候却生效~~importorg.slf ... [详细]
  • 解析SQL查询结果的排序问题及其解决方案
    本文探讨了为什么某些SQL查询返回的数据集未能按预期顺序排列,并提供了详细的解决方案,帮助开发者理解并解决这一常见问题。 ... [详细]
  • 对象自省自省在计算机编程领域里,是指在运行时判断一个对象的类型和能力。dir能够返回一个列表,列举了一个对象所拥有的属性和方法。my_list[ ... [详细]
  • 深入解析Java枚举及其高级特性
    本文详细介绍了Java枚举的概念、语法、使用规则和应用场景,并探讨了其在实际编程中的高级应用。所有相关内容已收录于GitHub仓库[JavaLearningmanual](https://github.com/Ziphtracks/JavaLearningmanual),欢迎Star并持续关注。 ... [详细]
  • 深入解析动态代理模式:23种设计模式之三
    在设计模式中,动态代理模式是应用最为广泛的一种代理模式。它允许我们在运行时动态创建代理对象,并在调用方法时进行增强处理。本文将详细介绍动态代理的实现机制及其应用场景。 ... [详细]
  • python时间序列之ADF检验(1)
    读取数据,pd.read_csv默认生成DataFrame对象,需将其转换成Series对象DataFrame和Series是pandas中最常见的2 ... [详细]
  • 本文探讨了使用C#在SQL Server和Access数据库中批量插入多条数据的性能差异。通过具体代码示例,详细分析了两种数据库的执行效率,并提供了优化建议。 ... [详细]
  • Python处理Word文档的高效技巧
    本文详细介绍了如何使用Python处理Word文档,涵盖从基础操作到高级功能的各种技巧。我们将探讨如何生成文档、定义样式、提取表格数据以及处理超链接和图片等内容。 ... [详细]
  • 本文介绍如何使用 Android 的 Canvas 和 View 组件创建一个简单的绘图板应用程序,支持触摸绘画和保存图片功能。 ... [详细]
  • 本文详细探讨了JavaScript中的作用域链和闭包机制,解释了它们的工作原理及其在实际编程中的应用。通过具体的代码示例,帮助读者更好地理解和掌握这些概念。 ... [详细]
  • Hadoop发行版本选择指南:技术解析与应用实践
    本文详细介绍了Hadoop的不同发行版本及其特点,帮助读者根据实际需求选择最合适的Hadoop版本。内容涵盖Apache Hadoop、Cloudera CDH等主流版本的特性及应用场景。 ... [详细]
  • 二维几何变换矩阵解析
    本文详细介绍了二维平面上的三种常见几何变换:平移、缩放和旋转。通过引入齐次坐标系,使得这些变换可以通过统一的矩阵乘法实现,从而简化了计算过程。文中不仅提供了理论推导,还附有Python代码示例,帮助读者更好地理解这些概念。 ... [详细]
  • 基于机器学习的人脸识别系统实现
    本文介绍了一种使用机器学习技术构建人脸识别系统的实践案例。通过结合Python编程语言和深度学习框架,详细展示了从数据预处理到模型训练的完整流程,并提供了代码示例。 ... [详细]
  • 本文介绍了SVD(奇异值分解)和QR分解的基本原理及其在Python中的实现方法。通过具体代码示例,展示了如何使用这两种矩阵分解技术处理图像数据和计算特征值。 ... [详细]
  • Redux入门指南
    本文介绍Redux的基本概念和工作原理,帮助初学者理解如何使用Redux管理应用程序的状态。Redux是一个用于JavaScript应用的状态管理库,特别适用于React项目。 ... [详细]
author-avatar
嘉兴布奇乐乐园
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有