热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python数据科学:方差分析

之前已经介绍的变量分析:其中分类个数大于两个,分类变量也可以有多个。当分类变量为多个时,对分类个数不

之前已经介绍的变量分析:

  • ①相关分析:一个连续变量与一个连续变量间的关系。
  • ②双样本t检验:一个二分分类变量与一个连续变量间的关系。

本次介绍:

  • 方差分析:一个多分类分类变量与一个连续变量间的关系。

其中分类个数大于两个,分类变量也可以有多个。

当分类变量为多个时,对分类个数不做要求,即可以为二分分类变量。

一、数理统计技术

数理统计分为频率和贝叶斯两大学派。

描述性统计分析,描述性分析就是从总体数据中提炼变量的主要信息,即统计量。

描述性分析的难点在于对业务的了解和对数据的寻找。

统计推断和统计建模,建立解释变量与被解释变量之间可解释的、稳定的、最好是具有因果关系的表达式。

在模型运用时,将解释变量(自变量)带入表达式中,用于预测被解释变量(因变量)的值。

现阶段,我学习的就是统计推断与建模的知识...

二、方差分析

方差分析用于检验多个样本的均值是否有显著差异。

探索多于两个分类的分类变量与连续变量的关系。

比如说「浅谈数据分析岗」中薪水与教育程度之间的关系,教育程度为一个多分类的分类变量。

01 单因素方差分析

单因素方差分析的前提条件:

  • ①变量服从正态分布(薪水符合)。
  • ②观测之间独立(教育程度符合)。
  • ③需验证组间的方差是否相同,即方差齐性检验。

组间误差与组内误差、组间变异与组内变异、组间均方与组内均方都是方差分析中的衡量标准。

如果组间均方明显大于组内均方,则说明教育程度对薪水的影响显著。

那么需要大多少才能确定结论呢?

这里组间均方与组内均方的比值是服从F分布,下面贴出F分布曲线图。

Python数据科学:方差分析

其中横坐标为F值,即组间均方与组内均方的比值。

当F值越大时,即组间均方越大、组内均方越小,说明组间的变异大。

并且对应的P值也越小(纵轴),便可以拒绝原假设(原假设为无差异)。

下面以「浅谈数据分析岗」中薪水与教育程度为例。

Python数据科学:方差分析

这里我们只是直观的看出薪水随学历的增长而增长,并没有实实在在的东西。

接下来就用数字来说话!!!

代码如下,需要清洗数据。

from scipy import stats 
import pandas as pd 
import pymysql 
# 获取数据库数据 
conn = pymysql.connect(host='localhost', user='root', password='774110919', port=3306, db='lagou_job', charset='utf8mb4') 
cursor = conn.cursor() 
sql = "select * from job" 
df = pd.read_sql(sql, conn) 
# 清洗数据,生成薪水列 
dom = [] 
for i in df['job_salary']: 
    i = ((float(i.split('-')[0].replace('k', '').replace('K', '')) + float(i.split('-')[1].replace('k', '').replace('K', ''))) / 2) * 1000 
    dom.append(i) 
df['salary'] = dom 
# 去除无效列 
data = df[df.job_education != '不限'] 
# 生成不同教育程度的薪水列表 
edu = [] 
for i in ['大专', '本科', '硕士']: 
    edu.append(data[data['job_education'] == i]['salary']) 
# 单因素方差分析 
print(stats.f_oneway(*edu)) 
# 得到的结果 
F_onewayResult(statistic=15.558365658927576, pvalue=3.0547055604132536e-07) 

得出结果,F值为15.5,P值接近于0,所以拒绝原假设,即教育程度会显著影响薪水。

02 多因素方差分析

多因素方差分析检验多个分类变量与一个连续变量的关系。

除了考虑分类变量对连续变量的影响,还需要考虑分类变量间的交互效应。

这里由于我的数据满足不了本次操作,所以选择书中的数据。

即探讨信用卡消费与性别、教育程度的关系。

首先考虑无交互效应,代码如下。

import statsmodels.formula.api as smf 
import statsmodels.api as sm 
import pandas as pd 
# 读取数据,skipinitialspace:忽略分隔符后的空白,dropna:对缺失的数据进行删除 
df = pd.read_csv('creditcard_exp.csv', skipinitialspace=True) 
df = df.dropna(how='any') 
# smf:最小二乘法,构建线性回归模型, 
ana = smf.ols('avg_exp ~ C(edu_class) + C(gender)', data=df).fit() 
# anova_lm:多因素方差分析 
print(sm.stats.anova_lm(ana)) 

输出结果。

Python数据科学:方差分析

可以看到教育程度的F值为31.57,P值趋近于0,拒绝原假设,即教育程度与平均支出有显著差异。

性别的F值为0.48,P值为0.48,无法拒绝原假设,即性别与平均支出无显著差异。

接下来考虑有交互效应,代码如下。

# 消除pandas输出省略号情况 
pd.set_option('display.max_columns', 5) 
# smf:最小二乘法,构建线性回归模型 
anal = smf.ols('avg_exp ~ C(edu_class) + C(gender) + C(edu_class)*C(gender)', data=df).fit() 
# anova_lm:多因素方差分析 
print(sm.stats.anova_lm(anal)) 

输出结果。

Python数据科学:方差分析

这里可以看出,考虑交互效应后,与教育程度及性别对应的F值和P值都发生了微小的改变。

其中教育程度和性别的交互项对平均支出的影响也是显著的,F值为2.22,P值为0.09。

上面这个结论是书中所说的,那么显著性水平取的是0.1吗???

这算是我理解不了的一部分。

下面是带交互项的多元方差分析的回归系数,表格中所有数据都是以男性及研究生学历作为基准去比对。

# 生成数据总览 
print(anal.summary()) 

输出结果。

Python数据科学:方差分析

可以看出第一种教育程度的女性较男性研究生,信用卡消费的影响较显著,P值为0.05。

原假设为无差异,拒绝原假设。

那么这里的显著性水平取的也是0.1吗???

第二种教育程度的女性较男性研究生,信用卡消费的影响显著,P值为0.001。

第三种缺失,没有参数估计。

三、总结

这里总结一下各个检验的原假设。

  • 单样本t检验原假设:总体均值与假设的检验值不存在显著差异(无差异)。
  • 双样本t检验原假设:两个样本均值(二分变量下的均值)不存在显著差异(无差异)。
  • 方差分析原假设:多个样本均值(多分变量下的均值)不存在显著差异(无差异)。

说明原假设都是假设变量关系无显著差异。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 我们


推荐阅读
  • 使用Vultr云服务器和Namesilo域名搭建个人网站
    本文详细介绍了如何通过Vultr云服务器和Namesilo域名搭建一个功能齐全的个人网站,包括购买、配置服务器以及绑定域名的具体步骤。文章还提供了详细的命令行操作指南,帮助读者顺利完成建站过程。 ... [详细]
  • 根据最新发布的《互联网人才趋势报告》,尽管大量IT从业者已转向Python开发,但随着人工智能和大数据领域的迅猛发展,仍存在巨大的人才缺口。本文将详细介绍如何使用Python编写一个简单的爬虫程序,并提供完整的代码示例。 ... [详细]
  • 本文详细探讨了JDBC(Java数据库连接)的内部机制,重点分析其作为服务提供者接口(SPI)框架的应用。通过类图和代码示例,展示了JDBC如何注册驱动程序、建立数据库连接以及执行SQL查询的过程。 ... [详细]
  • 本教程涵盖OpenGL基础操作及直线光栅化技术,包括点的绘制、简单图形绘制、直线绘制以及DDA和中点画线算法。通过逐步实践,帮助读者掌握OpenGL的基本使用方法。 ... [详细]
  • 本文详细介绍了 MySQL 中 LAST_INSERT_ID() 函数的使用方法及其工作原理,包括如何获取最后一个插入记录的自增 ID、多行插入时的行为以及在不同客户端环境下的表现。 ... [详细]
  • MySQL索引详解与优化
    本文深入探讨了MySQL中的索引机制,包括索引的基本概念、优势与劣势、分类及其实现原理,并详细介绍了索引的使用场景和优化技巧。通过具体示例,帮助读者更好地理解和应用索引以提升数据库性能。 ... [详细]
  • 基于KVM的SRIOV直通配置及性能测试
    SRIOV介绍、VF直通配置,以及包转发率性能测试小慢哥的原创文章,欢迎转载目录?1.SRIOV介绍?2.环境说明?3.开启SRIOV?4.生成VF?5.VF ... [详细]
  • 本文探讨了在Oracle数据库中,动态SQL语句的执行及其对事务管理的影响,特别是关于回滚操作的有效性。重点讨论了一个具体场景:将预警短信从当前表迁移到历史表时遇到的字段长度不匹配问题及相应的异常处理。 ... [详细]
  • 本文详细介绍了 Apache Jena 库中的 Txn.executeWrite 方法,通过多个实际代码示例展示了其在不同场景下的应用,帮助开发者更好地理解和使用该方法。 ... [详细]
  • 文件描述符、文件句柄与打开文件之间的关联解析
    本文详细探讨了文件描述符、文件句柄和打开文件之间的关系,通过具体示例解释了它们在操作系统中的作用及其相互影响。 ... [详细]
  • 本文介绍如何通过更改软件源来提前体验Ubuntu 8.10,包括详细的配置步骤和相关注意事项。 ... [详细]
  • Scala 实现 UTF-8 编码属性文件读取与克隆
    本文介绍如何使用 Scala 以 UTF-8 编码方式读取属性文件,并实现属性文件的克隆功能。通过这种方式,可以确保配置文件在多线程环境下的一致性和高效性。 ... [详细]
  • 本文探讨了MariaDB在当前数据库市场中的地位和挑战,分析其可能面临的困境,并提出了对未来发展的几点看法。 ... [详细]
  • 本题探讨如何通过最大流算法解决农场排水系统的设计问题。题目要求计算从水源点到汇合点的最大水流速率,使用经典的EK(Edmonds-Karp)和Dinic算法进行求解。 ... [详细]
  • ###问题删除目录时遇到错误提示:rm:cannotremoveusrlocaltmp’:Directorynotempty即使用rm-rf,还是会出现 ... [详细]
author-avatar
q40796672
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有