热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【Python实例第15讲】分类概率图

机器学习训练营——机器学习爱好者的自由交流空间(入群联系qq:2279055353)这个例子将用图形表示不同分类器的分类概率。所谓“分类概

机器学习训练营——机器学习爱好者的自由交流空间(入群联系qq:2279055353)


这个例子将用图形表示不同分类器的分类概率。所谓“分类概率”,是指某个数据点属于各个类别的概率。将所有数据点属于任何类的概率,用颜色深浅表示,作出分类概率图。

在这里,我们使用一个三类的数据集,分别用支持向量机(SVC)、L1 and L2惩罚的Logistic回归和高斯过程分类。默认情况下,线性SVC并不是一个概率分类器,但是可以通过设置参数probability=True改变。具有One v.s. Rest的Logistic回归并不是一个多类别分类器,因此,在分隔类2,类3时要比其它分类器复杂些。


实例详解

首先,导入必需的库。

print(__doc__)# Author: Alexandre Gramfort
# License: BSD 3 clauseimport matplotlib.pyplot as plt
import numpy as npfrom sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn import datasets

本例使用的是鸢尾花数据集iris, 并且只用前2个特征作图。

iris = datasets.load_iris()
X = iris.data[:, 0:2] # we only take the first two features for visualization
y = iris.targetn_features = X.shape[1]

定义不同的分类器,它们是:


  • L1惩罚的Logistic回归

  • L2惩罚的多类Logistic回归

  • L2惩罚的二类Logistic回归

  • 线性SVC

  • 高斯过程分类GPC

C = 10
kernel = 1.0 * RBF([1.0, 1.0]) # for GPC# Create different classifiers.
classifiers = {'L1 logistic': LogisticRegression(C=C, penalty='l1',solver='saga',multi_class='multinomial',max_iter=10000),'L2 logistic (Multinomial)': LogisticRegression(C=C, penalty='l2',solver='saga',multi_class='multinomial',max_iter=10000),'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2',solver='saga',multi_class='ovr',max_iter=10000),'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),'GPC': GaussianProcessClassifier(kernel)
}n_classifiers = len(classifiers)

画出分类概率图。


plt.figure(figsize=(3 * 2, n_classifiers * 2))
plt.subplots_adjust(bottom=.2, top=.95)xx = np.linspace(3, 9, 100)
yy = np.linspace(1, 5, 100).T
xx, yy = np.meshgrid(xx, yy)
Xfull = np.c_[xx.ravel(), yy.ravel()]for index, (name, classifier) in enumerate(classifiers.items()):classifier.fit(X, y)y_pred = classifier.predict(X)accuracy = accuracy_score(y, y_pred)print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100))# View probabilities:probas = classifier.predict_proba(Xfull)n_classes = np.unique(y_pred).sizefor k in range(n_classes):plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1)plt.title("Class %d" % k)if k == 0:plt.ylabel(name)imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)),extent=(3, 9, 1, 5), origin='lower')plt.xticks(())plt.yticks(())idx = (y_pred == k)if idx.any():plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='w', edgecolor='k')ax = plt.axes([0.15, 0.04, 0.7, 0.05])
plt.title("Probability")
plt.colorbar(imshow_handle, cax=ax, orientation='horizontal')plt.show()

在这里插入图片描述

在这里插入图片描述


精彩内容,请关注微信公众号:统计学习与大数据



推荐阅读
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 探索聚类分析中的K-Means与DBSCAN算法及其应用
    聚类分析是一种用于解决样本或特征分类问题的统计分析方法,也是数据挖掘领域的重要算法之一。本文主要探讨了K-Means和DBSCAN两种聚类算法的原理及其应用场景。K-Means算法通过迭代优化簇中心来实现数据点的划分,适用于球形分布的数据集;而DBSCAN算法则基于密度进行聚类,能够有效识别任意形状的簇,并且对噪声数据具有较好的鲁棒性。通过对这两种算法的对比分析,本文旨在为实际应用中选择合适的聚类方法提供参考。 ... [详细]
  • 在Python网络编程中,多线程技术的应用与优化是提升系统性能的关键。线程作为操作系统调度的基本单位,其主要功能是在进程内共享内存空间和资源,实现并行处理任务。当一个进程启动时,操作系统会为其分配内存空间,加载必要的资源和数据,并调度CPU进行执行。每个进程都拥有独立的地址空间,而线程则在此基础上进一步细化了任务的并行处理能力。通过合理设计和优化多线程程序,可以显著提高网络应用的响应速度和处理效率。 ... [详细]
  • 本文探讨了基于点集估算图像区域的Alpha形状算法在Python中的应用。通过改进传统的Delaunay三角剖分方法,该算法能够生成更加灵活和精确的形状轮廓,避免了单纯使用Delaunay三角剖分时可能出现的过大三角形问题。这种“模糊Delaunay三角剖分”技术不仅提高了形状的准确性,还增强了对复杂图像区域的适应能力。 ... [详细]
  • 利用 Python Socket 实现 ICMP 协议下的网络通信
    在计算机网络课程的2.1实验中,学生需要通过Python Socket编程实现一种基于ICMP协议的网络通信功能。与操作系统自带的Ping命令类似,该实验要求学生开发一个简化的、非标准的ICMP通信程序,以加深对ICMP协议及其在网络通信中的应用的理解。通过这一实验,学生将掌握如何使用Python Socket库来构建和解析ICMP数据包,并实现基本的网络探测功能。 ... [详细]
  • 分享一款基于Java开发的经典贪吃蛇游戏实现
    本文介绍了一款使用Java语言开发的经典贪吃蛇游戏的实现。游戏主要由两个核心类组成:`GameFrame` 和 `GamePanel`。`GameFrame` 类负责设置游戏窗口的标题、关闭按钮以及是否允许调整窗口大小,并初始化数据模型以支持绘制操作。`GamePanel` 类则负责管理游戏中的蛇和苹果的逻辑与渲染,确保游戏的流畅运行和良好的用户体验。 ... [详细]
  • 每年,意甲、德甲、英超和西甲等各大足球联赛的赛程表都是球迷们关注的焦点。本文通过 Python 编程实现了一种生成赛程表的方法,该方法基于蛇形环算法。具体而言,将所有球队排列成两列的环形结构,左侧球队对阵右侧球队,首支队伍固定不动,其余队伍按顺时针方向循环移动,从而确保每场比赛不重复。此算法不仅高效,而且易于实现,为赛程安排提供了可靠的解决方案。 ... [详细]
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 本课程深入探讨了 Python 中自定义序列类的实现方法,涵盖从基础概念到高级技巧的全面解析。通过实例演示,学员将掌握如何创建支持切片操作的自定义序列对象,并了解 `bisect` 模块在序列处理中的应用。适合希望提升 Python 编程技能的中高级开发者。 ... [详细]
  • 机器学习中的标准化缩放、最小-最大缩放及鲁棒缩放技术解析 ... [详细]
  • 探索偶数次幂二项式系数的求和方法及其数学意义 ... [详细]
  • 本章节在上一章的基础上,深入探讨了如何通过引入机器人实现自动聊天、表情包回应以及Adidas官方账号的自动抽签功能。具体介绍了使用wxpy库进行微信机器人的开发,优化了智能回复系统的性能和用户体验。通过详细的代码示例和实践操作,展示了如何实现这些高级功能,进一步提升了机器人的智能化水平。 ... [详细]
  • 优化后的标题:深入解析09版Jedis客户端
    深入解析09版Jedis客户端,本文将详细介绍如何在Java项目中正确配置Jedis以操作Redis。首先,确保项目的JDK版本和编译器设置正确。接着,通过Maven或Gradle导入必要的依赖项,如 `redis.clients:jedis`。此外,文章还将探讨Jedis连接池的配置与优化,以及常见问题的解决方案,帮助开发者高效使用Jedis进行Redis操作。 ... [详细]
  • 点互信息在自然语言处理中的应用与优化
    点互信息(Pointwise Mutual Information, PMI)是一种用于评估两个事件之间关联强度的统计量,在自然语言处理领域具有广泛应用。本文探讨了 PMI 在词共现分析、语义关系提取和情感分析等任务中的具体应用,并提出了几种优化方法,以提高其在大规模数据集上的计算效率和准确性。通过实验验证,这些优化策略显著提升了模型的性能。 ... [详细]
  • 本文详细介绍了在 Python 中使用 OpenCV 进行图像处理的各种方法和技巧,重点讲解了腐蚀(erode)和膨胀(dilate)操作,以及开运算和闭运算的应用。腐蚀操作可以去除前景物体的边缘部分,而膨胀操作则可以扩展前景物体的边界。开运算和闭运算则是结合这两种基本操作,用于消除图像中的噪声和填充空洞,提高图像处理的效果。通过具体的代码示例和实际应用案例,读者可以深入理解这些技术在图像处理中的重要作用。 ... [详细]
author-avatar
狮子小刚刚
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有