热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python空间分析|02利用Python计算空间局部自相关(LISA)

局部空间自相关importesdaimportnumpyasnpimportpandasaspdimportlibpysalaslpsimportgeopandasasg

局部空间自相关

import esda
import numpy as np
import pandas as pd
import libpysal as lps
import geopandas as gpd
import contextily as ctx
import matplotlib.pyplot as plt
from geopandas import GeoDataFrame
from shapely.geometry import Point
from pylab import figure, scatter, show
from splot.esda import moran_scatterplot
from esda.moran import Moran_Local
from splot.esda import plot_moran
from splot.esda import lisa_cluster
from splot.esda import plot_local_autocorrelation
%matplotlib inline
root_dir="/home/lighthouse/Learning/pysal/"
gdf = gpd.read_file(root_dir+'data/.shp') # 读取数据

数据概况

gdf.columns.values #字段名

array(['CODE', 'COUNT', 'SUM_AREA', 'FIRST_ANAM', 'OID_', 'CODE_1',
'DATAFLAG', 'TOTPOP', 'TOTPOP_10K', 'RURPOP_10K', 'TOWNPOP_10',
'AGRPRODUCT', 'AGRLBR_10K', 'AGRSTOTGDP', 'FSTGDPRATE',
'SCNDGDPRAT', 'THRDGDPRAT', 'Province', 'geometry'], dtype=object)

gdf.head(1)

计算局部空间自相关LISA


  • 第一产业占GDP比重FSTGDPRATE为变量

ax=gdf.plot(figsize=(8,8),column="FSTGDPRATE",scheme='Quantiles', k=5, cmap='GnBu', legend=True,)
ax.set_axis_off()


计算空间权重矩阵


  • pysal中的局部自相关计算中,要求权重矩阵的每一个元素都有邻接元素

y = gdf['FSTGDPRATE'].values
w = lps.weights.distance.Kernel.from_dataframe(gdf, fixed=False, k=15)
w.transform = 'r'

  • Local Moral 计算

moran_loc = Moran_Local(y, w)

  • Local Moral 散点图

fig, ax = moran_scatterplot(moran_loc, p=0.05)
ax.set_xlabel('FSTGDPRATE')
ax.set_ylabel('Spatial Lag of FSTGDPRATE')
plt.show()

  • 聚集区的空间分布

lisa_cluster(moran_loc, gdf, p=0.05, figsize = (9,9))
plt.show()

  • 根据上图结果可以看出,图中西部为高值聚集区,东部为低值聚集区。高值聚集区的第一产业产值占比比较高,而低值聚集区的第一产业产值占比比较低,这可以反映出区域的经济发展水平的空间异质性,区域发展不均衡。

  • 绘制结果组合图

plot_local_autocorrelation(moran_loc, gdf, 'FSTGDPRATE')
plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Vs9999Lu-1676603398739)(null)]


参考链接


  • https://pysal.org/libpysal/
  • https://pysal.org/esda/index.html
  • https://github.com/pysal/esda
  • http://pysal.org/notebooks/viz/splot/esda_morans_viz.html
  • http://darribas.org/gds_scipy16/ipynb_md/04_esda.html
  • https://splot.readthedocs.io/en/stable/users/tutorials/autocorrelation.html






推荐阅读
  • 探索聚类分析中的K-Means与DBSCAN算法及其应用
    聚类分析是一种用于解决样本或特征分类问题的统计分析方法,也是数据挖掘领域的重要算法之一。本文主要探讨了K-Means和DBSCAN两种聚类算法的原理及其应用场景。K-Means算法通过迭代优化簇中心来实现数据点的划分,适用于球形分布的数据集;而DBSCAN算法则基于密度进行聚类,能够有效识别任意形状的簇,并且对噪声数据具有较好的鲁棒性。通过对这两种算法的对比分析,本文旨在为实际应用中选择合适的聚类方法提供参考。 ... [详细]
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 利用 Python 中的 Altair 库实现数据抖动的水平剥离分析 ... [详细]
  • 使用 ListView 浏览安卓系统中的回收站文件 ... [详细]
  • 本文探讨了一种高效的算法,用于生成所有数字(0-9)的六位组合,允许重复使用数字,并确保这些组合的和等于给定的整数N。该算法通过优化搜索策略,显著提高了计算效率,适用于大规模数据处理和组合优化问题。 ... [详细]
  • 在开发过程中,我最初也依赖于功能全面但操作繁琐的集成开发环境(IDE),如Borland Delphi 和 Microsoft Visual Studio。然而,随着对高效开发的追求,我逐渐转向了更加轻量级和灵活的工具组合。通过 CLIfe,我构建了一个高度定制化的开发环境,不仅提高了代码编写效率,还简化了项目管理流程。这一配置结合了多种强大的命令行工具和插件,使我在日常开发中能够更加得心应手。 ... [详细]
  • 本指南从零开始介绍Scala编程语言的基础知识,重点讲解了Scala解释器REPL(读取-求值-打印-循环)的使用方法。REPL是Scala开发中的重要工具,能够帮助初学者快速理解和实践Scala的基本语法和特性。通过详细的示例和练习,读者将能够熟练掌握Scala的基础概念和编程技巧。 ... [详细]
  • Python进阶笔记:深入理解装饰器、生成器与迭代器的应用
    本文深入探讨了Python中的装饰器、生成器和迭代器的应用。装饰器本质上是一个函数,用于在不修改原函数代码和调用方式的前提下为其添加额外功能。实现装饰器需要掌握闭包、高阶函数等基础知识。生成器通过 `yield` 语句提供了一种高效生成和处理大量数据的方法,而迭代器则是一种可以逐个访问集合中元素的对象。文章详细解析了这些概念的原理和实际应用案例,帮助读者更好地理解和使用这些高级特性。 ... [详细]
  • 每日前端实战:148# 视频教程展示纯 CSS 实现按钮两侧滑入装饰元素的悬停效果
    通过点击页面右侧的“预览”按钮,您可以直接在当前页面查看效果,或点击链接进入全屏预览模式。该视频教程展示了如何使用纯 CSS 实现按钮两侧滑入装饰元素的悬停效果。视频内容具有互动性,观众可以实时调整代码并观察变化。访问以下链接体验完整效果:https://codepen.io/comehope/pen/yRyOZr。 ... [详细]
  • 机器学习中的标准化缩放、最小-最大缩放及鲁棒缩放技术解析 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • QT框架中事件循环机制及事件分发类详解
    在QT框架中,QCoreApplication类作为事件循环的核心组件,为应用程序提供了基础的事件处理机制。该类继承自QObject,负责管理和调度各种事件,确保程序能够响应用户操作和其他系统事件。通过事件循环,QCoreApplication实现了高效的事件分发和处理,使得应用程序能够保持流畅的运行状态。此外,QCoreApplication还提供了多种方法和信号槽机制,方便开发者进行事件的定制和扩展。 ... [详细]
  • 如何使用和示例代码解析 org.semanticweb.owlapi.model.OWLSubPropertyChainOfAxiom.getPropertyChain() 方法 ... [详细]
  • 如何使用 net.sf.extjwnl.data.Word 类及其代码示例详解 ... [详细]
author-avatar
wentingcool_533
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有