作者:YYANNILl_242 | 来源:互联网 | 2023-02-09 19:45
Python进程间通信QueuePipe-Python零基础入门教程-目录一.前言1.使用Queue线程间通信2.使用Queue进程间通信,适用于多个进程之间通信3.
目录
- 一.前言
- 1.使用 Queue 线程间通信
- 2.使用 Queue 进程间通信,适用于多个进程之间通信
- 3.使用 Pipe 进程间通信,适用于两个进程之间通信(一对一)
- 二.python 进程间通信 Queue/Pipe 使用
- 1.使用 Queue 进程间通信
- 2.使用 Pipe 进程间通信
- 三.测试 queue.Queue 来完成进程间通信能否成功?
- 四.猜你喜欢
零基础 Python 学习路线推荐 : Python 学习目录 >> Python 基础入门
一.前言
1.在前一篇文章 Python 进程 Process 与线程 threading 区别 中讲到线程 threading 共享内存地址,进程与进程 Peocess 之间相互独立,互不影响(相当于深拷贝);
2.在线程间通信的时候可以使用 Queue 模块完成,进程间通信也可以通过 Queue 完成,但是此 Queue 并非线程的 Queue ,进程间通信 Queue 是将数据 pickle 后传给另一个进程的 Queue,用于父进程与子进程之间的通信或同一父进程的子进程之间通信;
1.使用 Queue 线程间通信
# !usr/bin/env python
# -*- coding:utf-8 _*-
"""
@Author:猿说编程
@Blog(个人博客地址): www.codersrc.com
@File:Python 进程间通信 Queue / Pipe.py
@Time:2021/05/09 07:37
@Motto:不积跬步无以至千里,不积小流无以成江海,程序人生的精彩需要坚持不懈地积累!
"""
#导入线程相关模块
import threading
import queue
q = queue.Queue()
2.使用 Queue 进程间通信,适用于多个进程之间通信
# !usr/bin/env python
# -*- coding:utf-8 _*-
"""
@Author:猿说编程
@Blog(个人博客地址): www.codersrc.com
@File:Python 进程间通信 Queue / Pipe.py
@Time:2021/05/09 07:37
@Motto:不积跬步无以至千里,不积小流无以成江海,程序人生的精彩需要坚持不懈地积累!
"""
# 导入进程相关模块
from multiprocessing import Process
from multiprocessing import Queue
q = Queue()
3.使用 Pipe 进程间通信,适用于两个进程之间通信(一对一)
# !usr/bin/env python
# -*- coding:utf-8 _*-
"""
@Author:猿说编程
@Blog(个人博客地址): www.codersrc.com
@File:Python 进程间通信 Queue / Pipe.py
@Time:2021/05/09 07:37
@Motto:不积跬步无以至千里,不积小流无以成江海,程序人生的精彩需要坚持不懈地积累!
"""
# 导入进程相关模块
from multiprocessing import Process
from multiprocessing import Pipe
pipe = Pipe()
二.python 进程间通信 Queue/Pipe 使用
Python 提供了多种进程通信的方式,主要 Queue 和 Pipe 这两种方式,Queue 用于多个进程间实现通信,Pipe 用于两个进程的通信;
1.使用 Queue 进程间通信
- put :以插入数据到队列中,他还有两个可选参数:blocked 和 timeout 。详情自行百度
- get :从队列读取并且删除一个元素。同样还有两个可选参数:blocked 和 timeout , 详情自行百度
# !usr/bin/env python
# -\_- coding:utf-8 \_\_-
"""
@Author:猿说编程
@Blog(个人博客地址): www.codersrc.com
@File:Python 进程间通信 Queue / Pipe.py
@Time:2021/05/09 07:37
@Motto:不积跬步无以至千里,不积小流无以成江海,程序人生的精彩需要坚持不懈地积累!
"""
from multiprocessing import Process
from multiprocessing import Queue
import os,time,random
#写数据进程执行的代码
def proc_write(q,urls):
print ('Process is write....')
for url in urls:
q.put(url)
print ('put %s to queue... ' %url)
time.sleep(random.random())
#读数据进程的代码
def proc_read(q):
print('Process is reading...')
while True:
url = q.get(True)
print('Get %s from queue' %url)
if **name** == '**main**': #父进程创建 Queue,并传给各个子进程
q = Queue()
proc_write1 = Process(target=proc_write,args=(q,['url_1','url_2','url_3']))
proc_write2 = Process(target=proc_write,args=(q,['url_4','url_5','url_6']))
proc_reader = Process(target=proc_read,args=(q,)) #启动子进程,写入
proc_write1.start()
proc_write2.start()
proc_reader.start()
#等待proc_write1结束
proc_write1.join()
proc_write2.join()
#proc_raader进程是死循环,强制结束
proc_reader.terminate()
print("mian")
'''
输出结果:
Process is write....
put url_1 to queue...
Process is write....
put url_4 to queue...
Process is reading...
Get url_1 from queue
Get url_4 from queue
put url_5 to queue...
Get url_5 from queue
put url_2 to queue...
Get url_2 from queue
put url_3 to queue...
Get url_3 from queue
put url_6 to queue...
Get url_6 from queue
mian
'''
2.使用 Pipe 进程间通信
Pipe 常用于两个进程,两个进程分别位于管道的两端 Pipe 方法返回(conn1,conn2)代表一个管道的两个端,Pipe 方法有 duplex 参数,默认为 True ,即全双工模式,若为 FALSE ,conn1 只负责接收信息,conn2 负责发送, Pipe 同样也包含两个方法:
send : 发送信息;
recv : 接收信息;
# !usr/bin/env python
# -*- coding:utf-8 _*-
"""
@Author:猿说编程
@Blog(个人博客地址): www.codersrc.com
@File:Python 进程间通信 Queue / Pipe.py
@Time:2021/05/09 07:37
@Motto:不积跬步无以至千里,不积小流无以成江海,程序人生的精彩需要坚持不懈地积累!
"""
from multiprocessing import Process
from multiprocessing import Pipe
import os,time,random
#写数据进程执行的代码
def proc_send(pipe,urls):
#print 'Process is write....'
for url in urls:
print ('Process is send :%s' %url)
pipe.send(url)
time.sleep(random.random())
#读数据进程的代码
def proc_recv(pipe):
while True:
print('Process rev:%s' %pipe.recv())
time.sleep(random.random())
if __name__ == '__main__':
#父进程创建pipe,并传给各个子进程
pipe = Pipe()
p1 = Process(target=proc_send,args=(pipe[0],['url_'+str(i) for i in range(10) ]))
p2 = Process(target=proc_recv,args=(pipe[1],))
#启动子进程,写入
p1.start()
p2.start()
p1.join()
p2.terminate()
print("mian")
'''
输出结果:
Process is send :url_0
Process rev:url_0
Process is send :url_1
Process rev:url_1
Process is send :url_2
Process rev:url_2
Process is send :url_3
Process rev:url_3
Process is send :url_4
Process rev:url_4
Process is send :url_5
Process is send :url_6
Process is send :url_7
Process rev:url_5
Process is send :url_8
Process is send :url_9
Process rev:url_6
mian
'''
三.测试 queue.Queue 来完成进程间通信能否成功?
当然我们也可以尝试使用线程 threading 的 Queue 是否能完成线程间通信,示例代码如下:
# !usr/bin/env python
# -*- coding:utf-8 _*-
"""
@Author:猿说编程
@Blog(个人博客地址): www.codersrc.com
@File:Python 进程间通信 Queue / Pipe.py
@Time:2021/05/09 07:37
@Motto:不积跬步无以至千里,不积小流无以成江海,程序人生的精彩需要坚持不懈地积累!
"""
from multiprocessing import Process
# from multiprocessing import Queue # 进程间通信Queue,两者不要混淆
import queue # 线程间通信queue.Queue,两者不要混淆
import time
def p_put(q,*args):
q.put(args)
print('Has put %s' % args)
def p_get(q,*args):
print('%s wait to get...' % args)
print(q.get())
print('%s got it' % args)
if __name__ == "__main__":
q = queue.Queue()
p1 = Process(target=p_put, args=(q,'p1', ))
p2 = Process(target=p_get, args=(q,'p2', ))
p1.start()
p2.start()
'''
直接异常报错:
Traceback (most recent call last):
File "E:/Project/python_project/untitled10/123.py", line 38, in
p1.start()
File "G:\ProgramData\Anaconda3\lib\multiprocessing\process.py", line 105, in start
self._popen = self._Popen(self)
File "G:\ProgramData\Anaconda3\lib\multiprocessing\context.py", line 223, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "G:\ProgramData\Anaconda3\lib\multiprocessing\context.py", line 322, in _Popen
return Popen(process_obj)
File "G:\ProgramData\Anaconda3\lib\multiprocessing\popen_spawn_win32.py", line 65, in __init__
reduction.dump(process_obj, to_child)
File "G:\ProgramData\Anaconda3\lib\multiprocessing\reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
TypeError: can't pickle _thread.lock objects
'''
四.猜你喜欢
- Python 条件推导式
- Python 列表推导式
- Python 字典推导式
- Python 不定长参数 *argc/**kargcs
- Python 匿名函数 lambda
- Python return 逻辑判断表达式
- Python is 和 == 区别
- Python 可变数据类型和不可变数据类型
- Python 浅拷贝和深拷贝
- Python 异常处理
- Python 线程创建和传参
- Python 线程互斥锁 Lock
- Python 线程时间 Event
- Python 线程条件变量 Condition
- Python 线程定时器 Timer
- Python 线程信号量 Semaphore
- Python 线程障碍对象 Barrier
- Python 线程队列 Queue – FIFO
- Python 线程队列 LifoQueue – LIFO
- Python 线程优先队列 PriorityQueue
- Python 线程池 ThreadPoolExecutor(一)
- Python 线程池 ThreadPoolExecutor(二)
- Python 进程 Process 模块
- Python 进程 Process 与线程 threading 区别
- Python 进程间通信 Queue / Pipe
未经允许不得转载:猿说编程 » Python 进程间通信 Queue / Pipe
[喜欢(1)](Javascript:? [打赏](Javascript:?
本文由博客 - 猿说编程 猿说编程 发布!