热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python机器学习数据预处理:读取txt数据文件并切分为训练和测试数据集

背景信息在使用Python进行机器学习时,经常需要自己完成数据的预处理,本节主要实现对txt文本数据的读取,该文本满足如下要求ÿ

背景信息

在使用Python进行机器学习时,经常需要自己完成数据的预处理,本节主要实现对txt文本数据的读取,该文本满足如下要求:


  • 每行为一条样本数据,包括特征值与标签,标签在最后
  • 样本数据的特征值之间以及标签之间使用,分割
  • 文本末尾无空行(在人为编辑过程中很容易在末尾加入空行,要检查并删除)

本文先给出实现代码,最后以Iris数据集为例说明如何使用。


代码实现

# 引入所需包
import numpy as np
import random

#读取数据函数,输入为数据文件名和训练、测试切分比率,返回为list类型的训练数据集和测试数据集
def loadData(fileName,ratio): trainingData=[]testData=[]with open(fileName) as txtData:lines=txtData.readlines()for line in lines:lineData=line.strip().split(',') #去除空白和逗号“,”if random.random()

#输入为list类型数据,分割为特征和标签两部分,返回为np.narray类型的特征数组和标签数组
def splitData(dataSet): character=[]label=[]for i in range(len(dataSet)):character.append([float(tk) for tk in dataSet[i][:-1]])label.append(dataSet[i][-1])return np.array(character),np.array(label)

使用样例


  • 使用的数据集:Iris数据集,样例如下所示:

4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor

  • 测试代码

iris_file='/book/iris.data'
ratio=0.7
trainingData, testData=loadData(iris_file,ratio) ##加载文件,按一定比率切分为训练样本和测试样本
trainingCharacter,trainingLabel=splitData(trainingData) #将训练样本切分为数据和标签两个数组
testCharacter,testLabel=splitData(testData) #将测试样本切分为数据和标签两个数组








推荐阅读
author-avatar
Mr-o蛋挞
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有