热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python与R语言的功能对比及应用场景分析

Python与R语言在功能和应用场景上各有优势。尽管R语言在统计分析和数据可视化方面具有更强的专业性,但Python作为一种通用编程语言,适用于更广泛的领域,包括Web开发、自动化脚本和机器学习等。对于初学者而言,Python的学习曲线更为平缓,上手更加容易。此外,Python拥有庞大的社区支持和丰富的第三方库,使其在实际应用中更具灵活性和扩展性。

Python和R的区别

Python与R的区别:虽然R语言更为专业,但Python是为各种用例设计的通用编程语言。如果你第一次学编程,会发现Python上手更容易,应用范围也较广,如果你对编程已经有了一定的基础,或者就是以数据分析为中心的特定职业目标,R语言可能会更适合你的需求,Python和R也有很多相似之处,两者都是流行的开源编程语言,都得到了广泛的支持。

Python是近几年增长非常快的编程语言,是面向对象的,它为项目提供了稳定性和模块化,为Web开发和数据科学提供了灵活的方法,掌握Python是程序员在商业、数字产品、开源项目和数据科学以外的各种Web应用程序中工作所必需的技能。

R是一种特定于领域的语言,用于数据分析和统计,它使用统计学家使用的特定语法,是研究和学术数据科学世界的重要组成部分,R遵循开发的过程模型,没有将数据和代码分组,比如面向对象的编程,而是将编程任务分解为一系列的步骤和子程序,这些过程使可视化操作变得更加简单。学习Python的三个理由:1、对初学者是友好的,它使用了一种逻辑和易于接近的语法,使识别代码字符串更加容易,减少了学习困难和一些挑战。2、Python是多用途的,并不局限于数据科学,它还能很好的处理基于web的应用程序,并且支持多种数据结构,包括使用SQL的数据结构。3、Python是可伸缩的,比R语言运行速度更快,可以和项目一起增长和扩展,提供了必要的有效工作流程,使工作得以实现。

学习R的三个理由:1、R为统计而建,R使特定类型的程序构建和交流结果变得更加直观,统计学家和数据分析人员用R语言,会更容易使用标准机器学习模型和数据挖掘来管理大型数据集。2、R是学术性的:在学术界工作,R几乎是默认的。R非常适合机器学习的一个子领域,称为统计学习。

任何有正式统计背景的人都应该识别R的语法和结构。3、R对分析是直观的,它还提供了一个非常适合于科学家使用的数据可视化类型的强大环境。

r语言和python的区别是什么?

1、数据结构复杂程度不同 R中的数据结构非常的简单,主要包括向量一维、多维数组二维时为矩阵、列表非结构化数据、数据框结构化数据。 Python 则包含更丰富的数据结构来实现数据更精准的访问和内存控制,多维数组。

2、适用场景不同 R适用于数据分析任务需要独立计算或单个服务器的应用场景。

Python作为一种粘合剂语言,在数据分析任务中需要与Web应用程序集成或者当一条统计代码需要插入到生产数据库中时,使用Python更好。 3、数据处理能力不同 有了大量针对专业程序员以及非专业程序员的软件包和库的支持,不管是执行统计测试还是创建机器学习模型,R语言都得心应手。 Python最初在数据分析方面不是特别擅长,但随着NumPy、Pandas以及其他扩展库的推出,它已经逐渐在数据分析领域获得了广泛的应用。 4、开发环境不同 对于R语言,需要使用R Studio。

对于Python,有很多Python IDE可供选择,其中Spyder和IPython Notebook是最受欢迎的。

Python和R语言的区别

如下: Python入门简单,而R则相对比较难一些。R做文本挖掘现在还有点弱,当然优点在于函数都给你写好了,你只需要知道参数的形式就行了,有时候即使参数形式不对,R也能"智能地”帮你适应。

这种简单的软件适合想要专注于业务的人。

Python几乎都可以做,函数比R多,比R快。它是一门语言,R更像是一种软件,所以python更能开发出flexible的算法。 Python适合处理大量数据,而R则在这方面有很多力不从心,当然这么说的前提是对于编程基础比较一般的童鞋,对于大牛来说,多灵活运用矢量化编程的话,R的速度也不会太差。 介绍 Python和R本身在数据分析和数据挖掘方面都有比较专业和全面的模块,很多常用的功能,比如矩阵运算、向量运算等都有比较高级的用法,所以使用起来产出比大。

这两门语言对于平台方面适用性比较广,linux、window都可以使用,并且代码可移植性还算不错的。对于学数理统计的人来说,应该大多用过MATLAB以及mintab等工具,Python和R比较贴近这些常用的数学工具,使用起来有种亲切感。

python与r语言哪个好

Python比较好点,Python用的人比较多。 ython和R这2个都拥有庞大的用户支持。

2017年的调查显示,近45%的数据科学家使用Python作为主要的编程语言,另一方面,11.2%的数据科学家使用R语言。

python与r语言区别如下: Python的优势: 1. Python 包含比R更丰富的数据结构来实现数据更精准的访问和内存控制,大多数深度学习研究都是用python来完成的。 2. Python与R相比速度要快。Python可以直接处理上G的数据;R不行,R分析数据时需要先通过数据库把大数据转化为小数据(通过groupby)才能交给R做分析,因此R不可能直接分析行为详单,只能分析统计结果。 3. Python优于R的另一个优势是将模型部署到软件的其他部分。

Python是一种通用性语言,用python编写应用程序,包含基于Python的模型的过程是无缝的。 4. Python是一套比较平衡的语言,各方面都可以,无论是对其他语言的调用,和数据源的连接、读取,对系统的操作,还是正则表达和文字处理,Python都有着明显优势,尤其在计算机编程、网络爬虫上更有优势。 R语言的优势: 1. R在统计分析上是一种更高效的独立数据分析工具。

在R中进行大量的统计建模研究,有更广泛的模型类可供选择,如果你对建模有疑问,R是最合适的。 2. R的另外一个技巧就是使用Shiny轻松地创建仪表盘,Python也有Dash作为替代,但是不够成熟。 3. R的函数是为统计学家开发的,因此它具有特定领域优势,比如数据可视化的强大特性,由R Studio的首席科学家Hadley Wickham创建的ggplot2 如今是R历史上最受欢迎的数据可视化软件包之一。

ggplot2允许用户在更高的抽象级别自定义绘图组件。我个人非常喜欢ggplot2的各种功能和自定义。ggplot2提供的50多种图像适用于各种行业。

r语言和python哪个更有用

通常,我们认为Python比R在计算机编程、网络爬虫上更有优势,而 R 在统计分析上是一种更高效的独立数据分析工具。所以说,同时学会Python和R这两把刷子才是数据科学的王道。

R语言,一种自由软件编程语言与操作环境,主要用于统计分析、绘图、数据挖掘。

R本来是由来自新西兰奥克兰大学的罗斯·伊哈卡和罗伯特·杰特曼开发(也因此称为R),现在由“R开发核心团队”负责开发。 R基于S语言的一个GNU计划项目,所以也可以当作S语言的一种实现,通常用S语言编写的代码都可以不作修改的在R环境下运行。R的语法是来自Scheme。 R的源代码可自由下载使用,亦有已编译的可执行文件版本可以下载,可在多种平台下运行,包括UNIX(也包括FreeBSD和Linux)、Windows和MacOS。

R主要是以命令行操作,同时有人开发了几种图形用户界面。 R的功能能够通过由用户撰写的包增强。增加的功能有特殊的统计技术、绘图功能,以及编程接口和数据输出/输入功能。

这些软件包是由R语言、LaTeX、Java及最常用C语言和Fortran撰写。 下载的可执行文件版本会连同一批核心功能的软件包,而根据CRAN纪录有过千种不同的软件包。其中有几款较为常用,例如用于经济计量、财经分析、人文科学研究以及人工智能。

Python与R语言的共同特点: Python和R在数据分析和数据挖掘方面都有比较专业和全面的模块,很多常用的功能,比如矩阵运算、向量运算等都有比较高级的用法。 Python和R两门语言有多平台适应性,linux、window都可以使用,并且代码可移植性强。 Python和R比较贴近MATLAB以及minitab等常用的数学工具。

Python与R语言的区别: 数据结构方面,由于是从科学计算的角度出发,R中的数据结构非常的简单,主要包括向量(一维)、多维数组(二维时为矩阵)、列表(非结构化数据)、数据框(结构化数据)。 而 Python 则包含更丰富的数据结构来实现数据更精准的访问和内存控制,多维数组(可读写、有序)、元组(只读、有序)、集合(唯一、无序)、字典(Key-Value)等等。 Python与R相比速度要快。Python可以直接处理上G的数据;R不行,R分析数据时需要先通过数据库把大数据转化为小数据(通过groupby)才能交给R做分析,因此R不可能直接分析行为详单,只能分析统计结果。

Python是一套比较平衡的语言,各方面都可以,无论是对其他语言的调用,和数据源的连接、读取,对系统的操作,还是正则表达和文字处理,Python都有着明显优势。 而R是在统计方面比较突出。 Python的pandas借鉴了R的dataframes,R中的rvest则参考了Python的BeautifulSoup,两种语言在一定程度上存在互补性。

python和r语言的区别是什么

在从事数据分析行业中,我们都会从R与Python当中进行选择,但是,从这两个异常强大、灵活好用的数据分析语中选择,却是非常难以选择的。 为了让大家能选择出更适合自己的语言,我们将两种语言进行简单的对比。

Stack Overflow趋势对比

推荐阅读
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • 数据管理权威指南:《DAMA-DMBOK2 数据管理知识体系》
    本书提供了全面的数据管理职能、术语和最佳实践方法的标准行业解释,构建了数据管理的总体框架,为数据管理的发展奠定了坚实的理论基础。适合各类数据管理专业人士和相关领域的从业人员。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • 本文介绍如何解决在 IIS 环境下 PHP 页面无法找到的问题。主要步骤包括配置 Internet 信息服务管理器中的 ISAPI 扩展和 Active Server Pages 设置,确保 PHP 脚本能够正常运行。 ... [详细]
  • 本文详细分析了JSP(JavaServer Pages)技术的主要优点和缺点,帮助开发者更好地理解其适用场景及潜在挑战。JSP作为一种服务器端技术,广泛应用于Web开发中。 ... [详细]
  • PHP 5.2.5 安装与配置指南
    本文详细介绍了 PHP 5.2.5 的安装和配置步骤,帮助开发者解决常见的环境配置问题,特别是上传图片时遇到的错误。通过本教程,您可以顺利搭建并优化 PHP 运行环境。 ... [详细]
  • Java内存管理与优化:自动与手动释放策略
    本文深入探讨了Java中的内存管理机制,包括自动垃圾回收和手动释放内存的方法。通过理解这些机制,开发者可以更好地优化程序性能并避免内存泄漏。 ... [详细]
  • 从 .NET 转 Java 的自学之路:IO 流基础篇
    本文详细介绍了 Java 中的 IO 流,包括字节流和字符流的基本概念及其操作方式。探讨了如何处理不同类型的文件数据,并结合编码机制确保字符数据的正确读写。同时,文中还涵盖了装饰设计模式的应用,以及多种常见的 IO 操作实例。 ... [详细]
  • 本文探讨了如何在编程中正确处理包含空数组的 JSON 对象,提供了详细的代码示例和解决方案。 ... [详细]
  • Ralph的Kubernetes进阶之旅:集群架构与对象解析
    本文深入探讨了Kubernetes集群的架构和核心对象,详细介绍了Pod、Service、Volume等基本组件,以及更高层次的抽象如Deployment、StatefulSet等,帮助读者全面理解Kubernetes的工作原理。 ... [详细]
  • andr ... [详细]
  • 武汉大学计算机学院研究生入学考试科目及专业方向
    武汉大学计算机学院为考生提供了多个硕士点,涵盖计算机科学与技术、软件工程、信息安全等多个领域。考研科目包括思想政治理论、英语一或二、数学一或二以及专业基础课程。具体的专业方向和考试科目详见正文。 ... [详细]
  • Codeforces Round #566 (Div. 2) A~F个人题解
    Dashboard-CodeforcesRound#566(Div.2)-CodeforcesA.FillingShapes题意:给你一个的表格,你 ... [详细]
  • 使用GDI的一些AIP函数我们可以轻易的绘制出简 ... [详细]
author-avatar
天生好客2602916983_826
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有