热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Sqoop数据迁移,工作机制,sqoop安装(配置),Sqoop的数据导入,导入表数据到HDFS,导入关系表到HIVE,导入到HDFS指定目录,导入表数据子集,按需导入,增量导入,sqoop数据导出

1.sqoop数据迁移1.1概述sqoop是apache旗下一款“Hadoop和关系数据库服务器之间传送数据”的工具。导入数据:MySQL,Oracle导入数据到Hadoop的H

1. sqoop数据迁移

1.1 概述

sqoop是apache旗下一款“Hadoop和关系数据库服务器之间传送数据”的工具。
导入数据:MySQL,Oracle导入数据到Hadoop的HDFS、HIVE、HBASE等数据存储系统;
导出数据:从Hadoop的文件系统中导出数据到关系数据库
这里写图片描述

1.2 工作机制

将导入或导出命令翻译成mapreduce程序来实现
在翻译出的mapreduce中主要是对inputformat和outputformat进行定制

1.3 sqoop实战及原理

1.3.1 sqoop安装

安装sqoop的前提是已经具备java和hadoop的环境
1、下载并解压
最新版下载地址http://ftp.wayne.edu/apache/sqoop/1.4.6/
比如:sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz

[root@hadoop1 sqoop]# tar -zxvf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz
[root@hadoop1 sqoop]# mv sqoop-1.4.6.bin__hadoop-2.0.4-alpha sqoop
[root@hadoop1 sqoop]# ls
sqoop sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz sqoop-1.99.7.tar.gz

2、修改配置文件
在/etc/profile中配置sqoop_home,代码如下:

vim /etc/profile
export SQOOP_HOME=/home/tuzq/software/sqoop/sqoop
追加path
export PATH=$PATH:$SQOOP_HOME/bin
[root@hadoop1 sqoop]# source /etc/profile
$ cd $SQOOP_HOME/conf
$ mv sqoop-env-template.sh sqoop-env.sh

打开sqoop-env.sh并编辑下面几行:

export HADOOP_COMMON_HOME=/home/tuzq/software/hadoop-2.8.0
export HADOOP_MAPRED_HOME=/home/tuzq/software/hadoop-2.8.0
export HIVE_HOME=/home/tuzq/software/hive/apache-hive-1.2.1-bin

配置后的界面效果如下:
这里写图片描述

3、加入mysql的jdbc驱动包
将mysql-connector-java-5.1.38.jar 放到 $SQOOP_HOME/lib/ 下。
4、验证启动

$ cd $SQOOP_HOME/bin
$ sqoop-version

预期的输出:

[root@hadoop1 conf]# cd $SQOOP_HOME
[root@hadoop1 sqoop]# ls
bin CHANGELOG.txt conf ivy lib NOTICE.txt README.txt sqoop-patch-review.py src
build.xml COMPILING.txt docs ivy.xml LICENSE.txt pom-old.xml sqoop-1.4.6.jar sqoop-test-1.4.6.jar testdata
[root@hadoop1 sqoop]# pwd
/home/tuzq/software/sqoop/sqoop
[root@hadoop1 sqoop]# sqoop-version
Warning: /home/tuzq/software/sqoop/sqoop/../hbase does not exist! HBase imports will fail.
Please set $HBASE_HOME to the root of your HBase installation.
Warning: /home/tuzq/software/sqoop/sqoop/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /home/tuzq/software/sqoop/sqoop/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
Warning: /home/tuzq/software/sqoop/sqoop/../zookeeper does not exist! Accumulo imports will fail.
Please set $ZOOKEEPER_HOME to the root of your Zookeeper installation.
17/06/14 22:34:57 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
Sqoop 1.4.6
git commit id c0c5a81723759fa575844a0a1eae8f510fa32c25
Compiled by root on Mon Apr 27 14:38:36 CST 2015
[root@hadoop1 sqoop]#

到这里,整个Sqoop安装工作完成。

1.4 Sqoop的数据导入

“导入工具”导入单个表从RDBMS到HDFS。表中的每一行被视为HDFS的记录。所有记录都存储为文本文件的文本数据(或者Avro、sequence文件等二进制数据)

1.4.1 语法

下面的语法用于将数据导入HDFS。

$ sqoop import (generic-args) (import-args) 

具体的案例在下面:

1.4.2 示例

表数据
在MySql数据库中有一个数据库mysql,在mysql中有一个用户表user
导入表表数据到HDFS
下面的命令用于从MySQL数据库服务器中的user表导入HDFS。

[root@hadoop1 sqoop]# bin/sqoop import --connect jdbc:mysql://hadoop10:3306/mysql --username root --password 123456 --target-dir /mySqoopUser --table user --m 1

这里写图片描述
这里写图片描述
查看hdfs上的内容:
这里写图片描述
通过上图,可以知道通过sqoop已经将数据导入到了hdfs中。

如果成功执行,那么会得到下面的输出。

14/12/22 15:24:54 INFO sqoop.Sqoop: Running Sqoop version: 1.4.5
14/12/22 15:24:56 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/cebe706d23ebb1fd99c1f063ad51ebd7/emp.jar
-----------------------------------------------------

O mapreduce.Job: map 0% reduce 0%
14/12/22 15:28:08 INFO mapreduce.Job: map 100% reduce 0%
14/12/22 15:28:16 INFO mapreduce.Job: Job job_1419242001831_0001 completed successfully
-----------------------------------------------------

-----------------------------------------------------
14/12/22 15:28:17 INFO mapreduce.ImportJobBase: Transferred 145 bytes in 177.5849 seconds (0.8165 bytes/sec)
14/12/22 15:28:17 INFO mapreduce.ImportJobBase: Retrieved 5 records.

导入关系表到HIVE

[root@hadoop1 sqoop]# bin/sqoop import --connect jdbc:mysql://hadoop10:3306/mysql --username root --password 123456 --table func --hive-import --m 1

导入的效果如下:
这里写图片描述
最后:
这里写图片描述
进入hive查看表:

[root@hadoop1 sqoop]# cd $HIVE_HOME
[root@hadoop1 apache-hive-1.2.1-bin]# bin/hive
hive> show tables;
OK
func
wyp
Time taken: 1.133 seconds, Fetched: 2 row(s)
hive>

通过上面可以看到func已经被导入到了hive中

导入到HDFS指定目录
在导入表数据到HDFS使用Sqoop导入工具,我们可以指定目标目录。
以下是指定目标目录选项的Sqoop导入命令的语法。

--target-dir <new or exist directory in HDFS>

下面的命令是用来导入emp_add表数据到’/queryresult’目录。

bin/sqoop import \
--connect jdbc:mysql://hadoop10:3306/test \
--username root \
--password root \
--target-dir /queryresult \
--table emp --m 1

下面的命令是用来验证 /queryresult 目录中 emp_add表导入的数据形式。
$HADOOP_HOME/bin/hadoop fs -cat /queryresult/part-m-*

它会用逗号(,)分隔emp_add表的数据和字段。

1201, 288A, vgiri,   jublee
1202, 108I, aoc, sec-bad
1203, 144Z, pgutta, hyd
1204, 78B, oldcity, sec-bad
1205, 720C, hitech, sec-bad

导入表数据子集
我们可以导入表的使用Sqoop导入工具,”where”子句的一个子集。它执行在各自的数据库服务器相应的SQL查询,并将结果存储在HDFS的目标目录。
where子句的语法如下。
–where

下面的命令用来导入emp_add表数据的子集。子集查询检索员工ID和地址,居住城市为:Secunderabad

bin/sqoop import \
--connect jdbc:mysql://hdp-node-01:3306/test \
--username root \
--password root \
--where "city ='sec-bad'" \
--target-dir /wherequery \
--table emp_add --m 1

按需导入

bin/sqoop import \
--connect jdbc:mysql://hdp-node-01:3306/test \
--username root \
--password root \
--target-dir /wherequery2 \
--query 'select id,name,deg from emp WHERE id>1207 and $CONDITIONS' \
--split-by id \
--fields-terminated-by '\t' \
--m 1

下面的命令用来验证数据从emp_add表导入/wherequery目录

$HADOOP_HOME/bin/hadoop fs -cat /wherequery/part-m-*

它用逗号(,)分隔 emp_add表数据和字段。

1202, 108I, aoc, sec-bad
1204, 78B, oldcity, sec-bad
1205, 720C, hitech, sec-bad

增量导入
增量导入是仅导入新添加的表中的行的技术。
它需要添加‘incremental’, ‘check-column’, 和 ‘last-value’选项来执行增量导入。
下面的语法用于Sqoop导入命令增量选项。

--incremental 
--check-column
--last value

假设新添加的数据转换成emp表如下:
1206, satish p, grp des, 20000, GR
下面的命令用于在EMP表执行增量导入。

bin/sqoop import \
--connect jdbc:mysql://hdp-node-01:3306/test \
--username root \
--password root \
--table emp --m 1 \
--incremental append \
--check-column id \
--last-value 1205

增量添加是通过—incremental append来添加的,通过检查id来实现。

以下命令用于从emp表导入HDFS emp/ 目录的数据验证。

$ $HADOOP_HOME/bin/hadoop fs -cat /user/hadoop/emp/part-m-*

它用逗号(,)分隔 emp_add表数据和字段。

1201, gopal,    manager, 50000, TP
1202, manisha, preader, 50000, TP
1203, kalil, php dev, 30000, AC
1204, prasanth, php dev, 30000, AC
1205, kranthi, admin, 20000, TP
1206, satish p, grp des, 20000, GR

下面的命令是从表emp 用来查看修改或新添加的行

$ $HADOOP_HOME/bin/hadoop fs -cat /emp/part-m-*1

这表示新添加的行用逗号(,)分隔emp表的字段。

1206, satish p, grp des, 20000, GR

1.5 Sqoop的数据导出

将数据从HDFS导出到RDBMS数据库
导出前,目标表必须存在于目标数据库中。
默认操作是从将文件中的数据使用INSERT语句插入到表中
更新模式下,是生成UPDATE语句更新表数据
语法
以下是export命令


$ sqoop export (generic-args) (export-args)


数据是在HDFS 中“EMP/”目录的emp_data文件中。所述emp_data如下:


1201, gopal, manager, 50000, TP
1202, manisha, preader, 50000, TP
1203, kalil, php dev, 30000, AC
1204, prasanth, php dev, 30000, AC
1205, kranthi, admin, 20000, TP
1206, satish p, grp des, 20000, GR


1、首先需要手动创建mysql中的表,然后在使用sqoop从hdfs导数据到关系型数据库


$ mysql
mysql> USE db;
mysql> CREATE TABLE employee (
id INT NOT NULL PRIMARY KEY,
name VARCHAR(20),
deg VARCHAR(20),
salary INT,
dept VARCHAR(10));后执行导出命令


bin/sqoop export \
--connect jdbc:mysql://hdp-node-01:3306/test \
--username root \
--password root \
--table emp2 \
--export-dir /user/hadoop/emp/

3、验证表mysql命令行。
mysql>select * from employee;
如果给定的数据存储成功,那么可以找到数据在如下的employee表。
+——+————–+————-+——————-+——–+
| Id | Name | Designation | Salary | Dept |
+——+————–+————-+——————-+——–+
| 1201 | gopal | manager | 50000 | TP |
| 1202 | manisha | preader | 50000 | TP |
| 1203 | kalil | php dev | 30000 | AC |
| 1204 | prasanth | php dev | 30000 | AC |
| 1205 | kranthi | admin | 20000 | TP |
| 1206 | satish p | grp des | 20000 | GR |
+——+————–+————-+——————-+——–+


推荐阅读
  • HBase在金融大数据迁移中的应用与挑战
    随着最后一台设备的下线,标志着超过10PB的HBase数据迁移项目顺利完成。目前,新的集群已在新机房稳定运行超过两个月,监控数据显示,新集群的查询响应时间显著降低,系统稳定性大幅提升。此外,数据消费的波动也变得更加平滑,整体性能得到了显著优化。 ... [详细]
  • 在PHP中如何正确调用JavaScript变量及定义PHP变量的方法详解 ... [详细]
  • 本文深入解析了通过JDBC实现ActiveMQ消息持久化的机制。JDBC能够将消息可靠地存储在多种关系型数据库中,如MySQL、SQL Server、Oracle和DB2等。采用JDBC持久化方式时,数据库会自动生成三个关键表:`activemq_msgs`、`activemq_lock`和`activemq_ACKS`,分别用于存储消息数据、锁定信息和确认状态。这种机制不仅提高了消息的可靠性,还增强了系统的可扩展性和容错能力。 ... [详细]
  • 本文介绍了如何查看PHP网站及其源码的方法,包括环境搭建、本地测试、源码查看和在线查找等步骤。 ... [详细]
  • HTTP(HyperTextTransferProtocol)是超文本传输协议的缩写,它用于传送www方式的数据。HTTP协议采用了请求响应模型。客服端向服务器发送一 ... [详细]
  • 在将Web服务器和MySQL服务器分离的情况下,是否需要在Web服务器上安装MySQL?如果安装了MySQL,如何解决PHP连接MySQL服务器时出现的连接失败问题? ... [详细]
  • 本文详细介绍了如何在 Linux 系统上安装 JDK 1.8、MySQL 和 Redis,并提供了相应的环境配置和验证步骤。 ... [详细]
  • Spring Boot 中配置全局文件上传路径并实现文件上传功能
    本文介绍如何在 Spring Boot 项目中配置全局文件上传路径,并通过读取配置项实现文件上传功能。通过这种方式,可以更好地管理和维护文件路径。 ... [详细]
  • javascript分页类支持页码格式
    前端时间因为项目需要,要对一个产品下所有的附属图片进行分页显示,没考虑ajax一张张请求,所以干脆一次性全部把图片out,然 ... [详细]
  • php更新数据库字段的函数是,php更新数据库字段的函数是 ... [详细]
  • 在搭建Hadoop集群以处理大规模数据存储和频繁读取需求的过程中,经常会遇到各种配置难题。本文总结了作者在实际部署中遇到的典型问题,并提供了详细的解决方案,帮助读者避免常见的配置陷阱。通过这些经验分享,希望读者能够更加顺利地完成Hadoop集群的搭建和配置。 ... [详细]
  • NoSQL数据库,即非关系型数据库,有时也被称作Not Only SQL,是一种区别于传统关系型数据库的管理系统。这类数据库设计用于处理大规模、高并发的数据存储与查询需求,特别适用于需要快速读写大量非结构化或半结构化数据的应用场景。NoSQL数据库通过牺牲部分一致性来换取更高的可扩展性和性能,支持分布式部署,能够有效应对互联网时代的海量数据挑战。 ... [详细]
  • 本文介绍如何在将数据库从服务器复制到本地时,处理因外键约束导致的数据插入失败问题。 ... [详细]
  • 本文最初发表在Thorben Janssen的Java EE博客上,每周都会分享最新的Java新闻和动态。 ... [详细]
  • 网站访问全流程解析
    本文详细介绍了从用户在浏览器中输入一个域名(如www.yy.com)到页面完全展示的整个过程,包括DNS解析、TCP连接、请求响应等多个步骤。 ... [详细]
author-avatar
吉翠芙_899
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有