热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【Plotly快速入门】用Plotly绘制了几张精湛的图表,美翻了!!

说到Python当中的可视化模块,相信大家用的比较多的还是matplotlib、seaborn等模块,今天小编来尝试用Plotly模块为大家绘制可视化图

说到Python当中的可视化模块,相信大家用的比较多的还是matplotlibseaborn等模块,今天小编来尝试用Plotly模块为大家绘制可视化图表,和前两者相比,用Plotly模块会指出来的可视化图表有着很强的交互性。

柱状图

我们先导入后面需要用到的模块并且生成一批假数据,

import numpy as np
import plotly.graph_objects as go# create dummy data
vals = np.ceil(100 * np.random.rand(5)).astype(int)
keys = ["A", "B", "C", "D", "E"]

我们基于所生成的假数据来绘制柱状图,代码如下

fig = go.Figure()
fig.add_trace(go.Bar(x=keys, y=vals)
)
fig.update_layout(height=600, width=600)
fig.show()

output

98f62a8463ff81c524d309a2473fa1bf.png

可能读者会感觉到绘制出来的图表略显简单,我们再来完善一下,添加上标题和注解,代码如下

# create figure
fig = go.Figure()
# 绘制图表
fig.add_trace(go.Bar(x=keys, y=vals, hovertemplate="Key: %{x}
Value: %{y}")
)
# 更新完善图表
fig.update_layout(font_family="Averta",hoverlabel_font_family="Averta",title_text="直方图",xaxis_title_text="X轴-键",xaxis_title_font_size=18,xaxis_tickfont_size=16,yaxis_title_text="Y轴-值",yaxis_title_font_size=18,yaxis_tickfont_size=16,hoverlabel_font_size=16,height=600, width=600
)
fig.show()

output

384e57b1b21b57bcbb9ae0c364a09553.gif

分组条形图和堆积条形图

例如我们有多组数据想要绘制成柱状图的话,我们先来创建好数据集

vals_2 = np.ceil(100 * np.random.rand(5)).astype(int)
vals_3 = np.ceil(100 * np.random.rand(5)).astype(int)vals_array = [vals, vals_2, vals_3]

然后我们遍历获取列表中的数值并且绘制成条形图,代码如下

# 生成画布
fig = go.Figure()
# 绘制图表
for i, vals in enumerate(vals_array):fig.add_trace(go.Bar(x=keys, y=vals, name=f"Group {i+1}", hovertemplate=f"Group {i+1}
Key: %{{x}}
Value: %{{y}}"))
# 完善图表
fig.update_layout(barmode="group",......
)
fig.show()

output

375daabe22525f1fcd17ad4b1e2509f1.gif

而我们想要变成堆积状的条形图,只需要修改代码中的一处即可,将fig.update_layout(barmode="group")修改成fig.update_layout(barmode="group")即可,我们来看一下出来的样子

箱型图

箱型图在数据统计分析当中也是应用相当广泛的,我们先来创建两个假数据

# create dummy data for boxplots
y1 = np.random.normal(size=1000)
y2 = np.random.normal(size=1000)

我们将上面生成的数据绘制成箱型图,代码如下

# 生成画布
fig = go.Figure()
# 绘制图表
fig.add_trace(go.Box(y=y1, name="Dataset 1"),
)
fig.add_trace(go.Box(y=y2, name="Dataset 2"),
)
fig.update_layout(......
)
fig.show()

output

83a50c91f372a2a104dc9392b84501ba.gif

散点图和气泡图

接下来我们尝试来绘制一张散点图,也是一样的步骤,我们想尝试生成一些假数据,代码如下

x = [i for i in range(1, 10)]
y = np.ceil(1000 * np.random.rand(10)).astype(int)

然后我们来绘制散点图,调用的是Scatter()方法,代码如下

# create figure
fig = go.Figure()fig.add_trace(go.Scatter(x=x, y=y, mode="markers", hovertemplate="x: %{x}
y: %{y}")
)fig.update_layout(.......
)
fig.show()

output

43310d4b888b7a53ad741933054b3169.png

那么气泡图的话就是在散点图的基础上,根据数值的大小来设定散点的大小,我们再来创建一些假数据用来设定散点的大小,代码如下

s = np.ceil(30 * np.random.rand(5)).astype(int)

我们将上面用作绘制散点图的代码稍作修改,通过marker_size参数来设定散点的大小,如下所示

fig = go.Figure()fig.add_trace(go.Scatter(x=x, y=y, mode="markers", marker_size=s, text=s, hovertemplate="x: %{x}
y: %{y}
Size: %{text}")
)
fig.update_layout(......
)
fig.show()

output

af33a55103b9be4c03493fd3304d8c13.gif

直方图

直方图相比较于上面提到的几种图表,总体上来说会稍微有点丑,但是通过直方图,读者可以更加直观地感受到数据的分布,我们先来创建一组假数据,代码如下

## 创建假数据
data = np.random.normal(size=1000)

然后我们来绘制直方图,调用的是Histogram()方法,代码如下

# 创建画布
fig = go.Figure()
# 绘制图表
fig.add_trace(go.Histogram(x=data, hovertemplate="Bin Edges: %{x}
Count: %{y}")
)
fig.update_layout(height=600,width=600
)
fig.show()

output

8bdb224b0c2b0801b12a3e50f659e2f5.png

我们再在上述图表的基础之上再进行进一步的格式优化,代码如下

# 生成画布
fig = go.Figure()
# 绘制图表
fig.add_trace(go.Histogram(x=data, histnorm="probability", hovertemplate="Bin Edges: %{x}
Count: %{y}")
)
fig.update_layout(......
)
fig.show()

output

49c57b8a5468193341a45174bbfbcba9.gif

多个子图拼凑到一块儿

相信大家都知道在matplotlib模块当中的subplots()方法可以将多个子图拼凑到一块儿,那么同样地在plotly当中也可以同样地将多个子图拼凑到一块儿,调用的是plotly模块当中make_subplots函数

from plotly.subplots import make_subplots
## 2行2列的图表
fig = make_subplots(rows=2, cols=2)
## 生成一批假数据用于图表的绘制
x = [i for i in range(1, 11)]
y = np.ceil(100 * np.random.rand(10)).astype(int)
s = np.ceil(30 * np.random.rand(10)).astype(int)
y1 = np.random.normal(size=5000)
y2 = np.random.normal(size=5000)

接下来我们将所要绘制的图表添加到add_trace()方法当中,代码如下

# 绘制图表
fig.add_trace(go.Bar(x=x, y=y, hovertemplate="x: %{x}
y: %{y}"),row=1, col=1
)
fig.add_trace(go.Histogram(x=y1, hovertemplate="Bin Edges: %{x}
Count: %{y}"),row=1, col=2
)
fig.add_trace(go.Scatter(x=x, y=y, mode="markers", marker_size=s, text=s, hovertemplate="x: %{x}
y: %{y}
Size: %{text}"),row=2, col=1
)
fig.add_trace(go.Box(y=y1, name="Dataset 1"),row=2, col=2
)
fig.add_trace(go.Box(y=y2, name="Dataset 2"),row=2, col=2
)
fig.update_xaxes(title_font_size=18, tickfont_size=16)
fig.update_yaxes(title_font_size=18, tickfont_size=16)
fig.update_layout(......
)
fig.show()

output

3cf69210dcd56cee93f70ae3ae8bd424.gif

NO.1

往期推荐

Historical articles

50行Python代码绘制数据大屏,这个可视化框架真的太神了

全网最详细教程整理,Python办公自动化操作Excel总结归纳

【原创佳作】介绍Pandas实战中一些高端玩法

分享一个2022年火遍全网的Python框架

分享、收藏、点赞、在看安排一下?

6afe7988745694424fb494ec8f77e180.gif

35c25520e60e321dc5cfc887d2373822.gif

207fe0e87ce7d858fa8a124f00ae2c50.gif

8a6b8b75340cabd4736ae6484e77fe65.gif


推荐阅读
  • 社交网络中的级联行为 ... [详细]
  • 本文详细介绍了Java中org.neo4j.helpers.collection.Iterators.single()方法的功能、使用场景及代码示例,帮助开发者更好地理解和应用该方法。 ... [详细]
  • 从 .NET 转 Java 的自学之路:IO 流基础篇
    本文详细介绍了 Java 中的 IO 流,包括字节流和字符流的基本概念及其操作方式。探讨了如何处理不同类型的文件数据,并结合编码机制确保字符数据的正确读写。同时,文中还涵盖了装饰设计模式的应用,以及多种常见的 IO 操作实例。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 利用决策树预测NBA比赛胜负的Python数据挖掘实践
    本文通过使用2013-14赛季NBA赛程与结果数据集以及2013年NBA排名数据,结合《Python数据挖掘入门与实践》一书中的方法,展示如何应用决策树算法进行比赛胜负预测。我们将详细讲解数据预处理、特征工程及模型评估等关键步骤。 ... [详细]
  • 本文详细介绍了Java中org.eclipse.ui.forms.widgets.ExpandableComposite类的addExpansionListener()方法,并提供了多个实际代码示例,帮助开发者更好地理解和使用该方法。这些示例来源于多个知名开源项目,具有很高的参考价值。 ... [详细]
  • 本文详细介绍了Akka中的BackoffSupervisor机制,探讨其在处理持久化失败和Actor重启时的应用。通过具体示例,展示了如何配置和使用BackoffSupervisor以实现更细粒度的异常处理。 ... [详细]
  • Scala 实现 UTF-8 编码属性文件读取与克隆
    本文介绍如何使用 Scala 以 UTF-8 编码方式读取属性文件,并实现属性文件的克隆功能。通过这种方式,可以确保配置文件在多线程环境下的一致性和高效性。 ... [详细]
  • #点球小游戏fromrandomimportchoiceimporttimescore[0,0]direction[left,center,right]defkick() ... [详细]
  • 深入解析Spring Cloud Ribbon负载均衡机制
    本文详细介绍了Spring Cloud中的Ribbon组件如何实现服务调用的负载均衡。通过分析其工作原理、源码结构及配置方式,帮助读者理解Ribbon在分布式系统中的重要作用。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文详细介绍了如何构建一个高效的UI管理系统,集中处理UI页面的打开、关闭、层级管理和页面跳转等问题。通过UIManager统一管理外部切换逻辑,实现功能逻辑分散化和代码复用,支持多人协作开发。 ... [详细]
  • 本文详细介绍了中央电视台电影频道的节目预告,并通过专业工具分析了其加载方式,确保用户能够获取最准确的电视节目信息。 ... [详细]
  • 在 Flutter 开发过程中,开发者经常会遇到 Widget 构造函数中的可选参数 Key。对于初学者来说,理解 Key 的作用和使用场景可能是一个挑战。本文将详细探讨 Key 的概念及其应用场景,并通过实例帮助你更好地掌握这一重要工具。 ... [详细]
  • 本教程详细介绍了如何使用 TensorFlow 2.0 构建和训练多层感知机(MLP)网络,涵盖回归和分类任务。通过具体示例和代码实现,帮助初学者快速掌握 TensorFlow 的核心概念和操作。 ... [详细]
author-avatar
rwp4677210
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有