热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python中内置数据库!SQLite使用指南!⛵

Python中内置数据库!SQLite使用指南!⛵-?作者:韩信子@ShowMeAI?Python3◉技能提升系列:https:www.showmeai.techtutor

? 作者:韩信子@ShowMeAI
? Python3◉技能提升系列:https://www.showmeai.tech/tutorials/56
? 本文地址:https://www.showmeai.tech/article-detail/390
? 声明:版权所有,转载请联系平台与作者并注明出处
? 收藏ShowMeAI查看更多精彩内容

Python 是一个广泛使用的编程语言,在各个领域都能发挥很大的作用,而且安装 Python 环境的同时,我们也安装了很多其他出色的工具,其中当然少不了数据库。

Python 内置了 SQLite3,在 Python 中使用 SQLite,不需要安装任何东西,可以直接使用。我们只需要导入内置 Python 库sqlite3就可以开始使用这个数据库啦!

在本篇内容中,ShowMeAI将带大家一起来了解,如何基于 Python 环境连接到数据库、创建表、插入数据,查询数据,以及与 Pandas 工具库搭配使用。

对于 SQL 更详尽的内容,欢迎大家查阅ShowMeAI制作的速查表:

? 编程语言速查表 | SQL 速查表

? 连接数据库

要使用数据库,我们需要先连接数据库。在 Python 中很简单,我们只需导入sqlite3工具库并使用.connect函数,函数的参数是数据库名称,在本例中为students.db

# 导入工具库
import sqlite3
# 建立连接
cOnn= sqlite3.connect('students.db')

我们第1次运行上面代码的话,会在工作目录中创建一个名为“students.db”的新文件。

? 创建表

接下来我们可以在连接的数据库中创建一个表,并将数据插入其中。

在创建表之前,我们需要创建一个游标 cursor(用于建立连接以执行 SQL 查询的对象),我们将使用它来创建表、插入数据等。具体的操作如下代码:

c = conn.cursor()

完成游标创建后,我们可以使用 .execute方法执行SQL语句,在我们的数据库中创建一个新表。在引号内,我们编写了建表 SQL 语句,使用CREATE TABLE语句:

c.execute("""CREATE TABLE students (
name TEXT,
age INTEGER,
height REAL
)""")

我们在创建表的字段时,需要定义数据类型。SQLite 只有 5 种数据类型:

  • Null:缺失值
  • INTEGER:没有小数点的数字(例如,1、2、3、4)
  • REAL:带小数点的数字(例如,6.2、7.6、11.2)
  • TEXT:任何字符数据
  • Blob:二进制数据的集合,作为值存储在数据库中。它允许我们在数据库中存储文档、图像和其他多媒体文件。

我们要提交上述语句,并关闭连接。截止目前的完整代码如下:

# 导入工具库
import sqlite3

# 创建连接
cOnn= sqlite3.connect('students.db')

# 游标
c = conn.cursor()  

# 建表语句
c.execute("""CREATE TABLE students (
            name TEXT,
            age INTEGER,
            height REAL
    )""")

# 执行
conn.commit()

# 关闭连接
conn.close()

? 插入数据

我们可以使用.execute执行INSERT INTO语句在“students”表中插入一行数据。下面是添加一个20 岁,身高 1.9 米的学生mark的代码:

c.execute("INSERT INTO students VALUES ('mark', 20, 1.9)")

我们也可以一次插入多行,换成.executemany方法即可。不过注意一下,我们在INSERT语句中会使用?作为占位符。代码如下所示:

all_students = [
('john', 21, 1.8),
('david', 35, 1.7),
('michael', 19, 1.83),
]
c.executemany("INSERT INTO students VALUES (?, ?, ?)", all_students)

? 查询数据

我们可以使用SELECT语句查看我们的数据,注意一下如果要获取数据并输出,需要执行.fetchall方法:

c.execute("SELECT * FROM students")
print(c.fetchall())

打印的输出如下:

[(‘mark’, 20, 1.9), (‘john’, 21, 1.8), (‘david’, 35, 1.7), (‘michael’, 19, 1.83)]

当然,大家其实可以配合一些在线工具来完成数据的直观查询,例如 ?SQLiteViewer。我们只需拖动前面 Python 代码生成的 .db 数据库文件进去,即可查看其内容。

截止目前为止的所有代码如下

# 导入工具库
import sqlite3

# 创建连接
cOnn= sqlite3.connect('students.db')

# 游标
c = conn.cursor()  

# 建表语句
c.execute("""CREATE TABLE students (
            name TEXT,
            age INTEGER,
            height REAL
    )""")

# 插入单条数据
c.execute("INSERT INTO students VALUES ('mark', 20, 1.9)")


# 插入多条数据
all_students = [
    ('john', 21, 1.8),
    ('david', 35, 1.7),
    ('michael', 19, 1.83),
]
c.executemany("INSERT INTO students VALUES (?, ?, ?)", all_students)

# 查询数据
c.execute("SELECT * FROM students")
print(c.fetchall())

# 执行
conn.commit()

# 关闭连接
conn.close()

其实大家在SQL中的更高级的复杂查询,都可以通过上述方式进行查询和交互

? SQLite 配合 Pandas 应用

SQLite 可以与 Pandas 中的Dataframe搭配使用。

例如,我们有一个名为?population_total.csv的 csv 文件,大家可以通过 ShowMeAI 的百度网盘地址下载。

? 实战数据集下载(百度网盘):公✦众✦号『ShowMeAI研究中心』回复『实战』,或者点击 这里 获取本文 [61]Python内置数据库SQLite使用指南 『SQLite示例数据集

ShowMeAI官方GitHub:https://github.com/ShowMeAI-Hub

我们可以方便地使用 Pandas 读取它:

import pandas as pd
df = pd.read_csv("population_total.csv")

Dataframe 内容如下所示:

>>> df             country year    population0             China  2020.0  1.439324e+09
1             China  2019.0  1.433784e+09
2             China  2018.0  1.427648e+09
3             China  2017.0  1.421022e+09
4             China  2016.0  1.414049e+09
...             ...     ...           ...
4180  United States  1965.0  1.997337e+08
4181  United States  1960.0  1.867206e+08
4182  United States  1955.0  1.716853e+08
4183          India  1960.0  4.505477e+08
4184          India  1955.0  4.098806e+08

我们可以把 pandas Dataframe 形态的数据一次性导入 SQLite 数据库中,这里我们需要借助 sqlalchemy 工具库(可以通过pip install sqlalchemy轻松安装)

from sqlalchemy import create_engine
engine = create_engine('sqlite://', echo=False)

下面我们就可以轻松把数据导入数据库并创建 population 表:

df.to_sql("population", con=engine)

查询数据表的语句如下:

engine.execute("SELECT * FROM population").fetchall()

如果你想创建表的同时生成一个 sqlite 文件(前面的操作,生成的是内存数据库),可以如下方式操作。(我们创建了一个mydb.db文件作为数据库的实体文件)。

from sqlalchemy import create_engine
engine = create_engine("sqlite:///mydb.db")
df.to_sql("population", engine)

这个mydb.db就和前面的使用方式一样啦,我们也可以使用 SQLite 查看器查看数据内容。

? 总结

以上就是ShowMeAI带大家简单了解python的内置数据库SQLite的使用方法,我们可以很方便地完成建表、插入数据、查询数据,也可以配合pandas进行灵活使用,大家快快用起来吧!

参考资料
  • ? 编程语言速查表 | SQL 速查表:https://www.showmeai.tech/article-detail/99
  • ?SQLiteViewer:https://inloop.github.io/sqlite-viewer/

推荐阅读
  • ? 数据分析实战系列 :https://www.showmeai.tech/tutorials/40
  • ? 机器学习数据分析实战系列:https://www.showmeai.tech/tutorials/41
  • ? 深度学习数据分析实战系列:https://www.showmeai.tech/tutorials/42
  • ? TensorFlow数据分析实战系列:https://www.showmeai.tech/tutorials/43
  • ? PyTorch数据分析实战系列:https://www.showmeai.tech/tutorials/44
  • ? NLP实战数据分析实战系列:https://www.showmeai.tech/tutorials/45
  • ? CV实战数据分析实战系列:https://www.showmeai.tech/tutorials/46
  • ? AI 面试题库系列:https://www.showmeai.tech/tutorials/48


推荐阅读
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • Python 3 Scrapy 框架执行流程详解
    本文详细介绍了如何在 Python 3 环境下安装和使用 Scrapy 框架,包括常用命令和执行流程。Scrapy 是一个强大的 Web 抓取框架,适用于数据挖掘、监控和自动化测试等多种场景。 ... [详细]
  • 本文将详细介绍如何在Mac上安装Jupyter Notebook,并提供一些常见的问题解决方法。通过这些步骤,您将能够顺利地在Mac上运行Jupyter Notebook。 ... [详细]
  • 大类|电阻器_使用Requests、Etree、BeautifulSoup、Pandas和Path库进行数据抓取与处理 | 将指定区域内容保存为HTML和Excel格式
    大类|电阻器_使用Requests、Etree、BeautifulSoup、Pandas和Path库进行数据抓取与处理 | 将指定区域内容保存为HTML和Excel格式 ... [详细]
  • 在Windows系统中安装TensorFlow GPU版的详细指南与常见问题解决
    在Windows系统中安装TensorFlow GPU版是许多深度学习初学者面临的挑战。本文详细介绍了安装过程中的每一个步骤,并针对常见的问题提供了有效的解决方案。通过本文的指导,读者可以顺利地完成安装并避免常见的陷阱。 ... [详细]
  • Python错误重试让多少开发者头疼?高效解决方案出炉
    ### 优化后的摘要在处理 Python 开发中的错误重试问题时,许多开发者常常感到困扰。为了应对这一挑战,`tenacity` 库提供了一种高效的解决方案。首先,通过 `pip install tenacity` 安装该库。使用时,可以通过简单的规则配置重试策略。例如,可以设置多个重试条件,使用 `|`(或)和 `&`(与)操作符组合不同的参数,从而实现灵活的错误重试机制。此外,`tenacity` 还支持自定义等待时间、重试次数和异常处理,为开发者提供了强大的工具来提高代码的健壮性和可靠性。 ... [详细]
  • 本指南详细介绍了在Linux环境中高效连接MySQL数据库的方法。用户可以通过安装并使用`mysql`客户端工具来实现本地连接,具体命令为:`mysql -u 用户名 -p 密码 -h 主机`。例如,使用管理员账户连接本地MySQL服务器的命令为:`mysql -u root -p pass`。此外,还提供了多种配置优化建议,以确保连接过程更加稳定和高效。 ... [详细]
  • 在 Ubuntu 系统中安装 Python pip 时遇到错误的解决方案 ... [详细]
  • 基于 Bottle 框架构建的幽默应用 —— Python 实践 ... [详细]
  • 掌握PHP编程必备知识与技巧——全面教程在当今的PHP开发中,了解并运用最新的技术和最佳实践至关重要。本教程将详细介绍PHP编程的核心知识与实用技巧。首先,确保你正在使用PHP 5.3或更高版本,最好是最新版本,以充分利用其性能优化和新特性。此外,我们还将探讨代码结构、安全性和性能优化等方面的内容,帮助你成为一名更高效的PHP开发者。 ... [详细]
  • SQL Server开发技巧:修改表结构后的视图批量更新方法与实践 ... [详细]
  • 如何在Python中配置库并创建可视化对象:详细指南与实践步骤
    本文详细介绍了如何在Python中配置库并创建复杂的可视化对象。通过具体的实践步骤,读者将学会利用Python的强大功能来实现高度定制化的数据可视化,特别是在PowerBI环境中,Python能够显著提升可视化的灵活性和表现力。 ... [详细]
  • CSS3 @font-face 字体应用技术解析与实践
    在Web前端开发中,HTML教程和CSS3的结合使得网页设计更加多样化。长期以来,Web设计师受限于“web-safe”字体的选择。然而,CSS3中的`@font-face`规则允许从服务器端加载自定义字体,极大地丰富了网页的视觉效果。通过这一技术,设计师可以自由选择和使用各种字体,提升用户体验和页面美观度。本文将深入解析`@font-face`的实现原理,并提供实际应用案例,帮助开发者更好地掌握这一强大工具。 ... [详细]
  • 在使用 SQL Server 时,连接故障是用户最常见的问题之一。通常,连接 SQL Server 的方法有两种:一种是通过 SQL Server 自带的客户端工具,例如 SQL Server Management Studio;另一种是通过第三方应用程序或开发工具进行连接。本文将详细分析导致连接故障的常见原因,并提供相应的解决策略,帮助用户有效排除连接问题。 ... [详细]
  • 在使用 `requests` 库进行 HTTP 请求时,如果遇到 `requests.exceptions.SSLError: HTTPSConnectionPool` 错误,通常是因为 SSL 证书验证失败。解决这一问题的方法包括:检查目标网站的 SSL 证书是否有效、更新本地的 CA 证书库、禁用 SSL 验证(不推荐用于生产环境)或使用自定义的 SSL 上下文。此外,确保 `requests` 库和相关依赖项已更新到最新版本,以避免潜在的安全漏洞。 ... [详细]
author-avatar
nuabolalalala5_760
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有