热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

培训机构python大纲

一、大数据处理技术-基于HadoopYarn的实战(含Spark、Storm和Docker应用介绍)本课程从大数据技术以及HadoopYarn实战的角度,结合理论和

一、大数据处理技术-基于Hadoop/Yarn的实战(含Spark、Storm和Docker应用介绍 )

本课程从大数据技术以及Hadoop/Yarn实战的角度,结合理论和实践,全方位地介绍Hadoop/Yarn这一高性能处理大数据工具的开发技巧。本课程涉及的主题包括:Hadoop/Yarn分布式文件系统DFS;MapReduce的的工作机制、类型和格式;如何构建和管理Hadoop/Yarn集群;Pig Latin语言的使用技巧;Hive数据仓库工具介绍;HBase和Zookeeper工具的使用和管理;开源数据采集工具sqoop。

本课程教学过程中还提供了案例分析来帮助学员了解如何用Hadoop/Yarn系列工具来解决具体的问题,并介绍了从大数据中挖掘出有价值的信息的关键。

第一讲 云计算及大数据处理技术介绍

第二讲 Google的关键技术

第三讲 Hadoop系统及HDFS

第四讲 MapReduce计算模型设计

第五讲 Pig 数据流处理工具

第六讲 云数据仓库Hive

第七讲 HBase和NoSQL

第八讲 数据抽取工具Sqoop

第九讲 Hadoop与其他云数据处理技术的融合

二、大数据实时处理–基于Spark的大数据实时处理及应用技术

课程中结合实例,介绍图工具GraphX如何发现社交网络中的人际关系,大数据挖掘工具MLlib如何进行商品聚类和电影推荐,以及Streaming流挖掘工具,并探讨了Spark与Docker等云环境下新技术的结合,分析了其应用前景。

本课程教学过程中还提供了案例分析来帮助学员了解如何用Spark实时大数据工具来解决业界的问题,并介绍了Spark生产环境搭建的相关知识。

第一讲 Spark大数据实时处理技术

第二讲 Spark安装配置及监控

第三讲 Scala编程语言使用概述

第四讲 Spark分布式计算框架

第五讲 Spark内部工作机制详解

第六讲 Spark数据读取与存储

第七讲 Spark通信模块和容错机制

第八讲 SQL On Spark

第九讲 Spark流数据处理工具Streaming

第十讲 Spark中的大数据挖掘工具MLlib

第十一讲 Spark大规模图处理工具GraphX

第十二讲 Spark与其他大数据技术的融合与应用

三、Storm大数据流式处理技术

本课程从大数据流式处理技术以及Storm实战的角度,理论和实践相结合,全方位地介绍Storm大数据流式处理工具的原理和内核。以案例分析的方式来帮助学员了解如何用BDAS系列工具来解决具体的问题,并介绍了从大数据中挖掘出有价值的信息的关键。

第一讲 Storm大数据处理介绍

第二讲 Storm配置和容错机制

第三讲 Storm可靠性及消息传输

第四讲 Storm拓扑及流分组

第五讲 Spout和Bolt详解

第六讲 分布式DPRC

第七讲 Storm事务拓扑

第八讲 Storm中的Trident

第九讲 Trident的状态

第十讲 Storm企业应用

四、大数据分布式存储系统

在大数据时代,很多企业的数据都是逐步积累的,这就要求存储系统有很好的横向扩展能力;而要对传统存储设备进行横向扩展,会带来很高的成本,但是分布式存储却能够比较好的解决这样的问题。

第一讲 分布式存储系统概述

第二讲 大数据集(超大文件)存储

第三讲 海量小文件存储

第四讲 分布式存储技术发展新动向和趋势

五、大数据前沿技术分析与应用

大数据相关技术最近几年出现了井喷的趋势,众多技术纷纷出现,典型的系统包括Hadoop、Spark、Flume、Scribe、Kafka、Storm、Mahout、MLlib、Docker等,涵盖网络数据爬取、日志采集、分布式消息订阅、大数据分析挖掘等方面,涉及离线批处理、实时处理、流式处理等多种处理方式。这些技术解决不同的应用需求,涉及面广,技术要求高,交叉知识范围广,知识内容更新频繁,要理清其中的关系,从中发现最适合本机构的技术,成为了目前各机构技术专家的一个难点。

第一讲 大数据技术基础

第二讲 批处理大数据平台Hadoop

第三讲 实时大数据平台Spark

第四讲 流式大数据平台Storm

第五讲 Python网络爬虫

第六讲 大数据日志采集工具Flume

第七讲 分布式消息订阅工具Kafka

第八讲 NoSQL云数据处理工具

第九讲 大数据中的SQL工具

第十讲 大数据分析挖掘工具

第十一讲 资源虚拟化工具Docker

第十二讲 大数据技术展望

六、数据仓库与数据挖掘(结合SPSS和WEKA)

本课程重在突出数据仓库与数据挖掘决策支持的本质,介绍数据挖掘的各种方法、技术实现手段,通过对实例的深入剖析解释它们的原理。

第一讲 数据仓库原理及联机分析技术介绍

第二讲 数据仓库设计与开发

第三讲 基于数据仓库的决策支持系统

第四讲 数据仓库案例剖析

第五讲 数据挖掘与知识发现

第六讲 关联分析算法及其案例

第七讲 聚类分析算法及其案例

第八讲 其它数据挖掘算法介绍

七、Python和R数据挖掘技术-基于Python和R语言的数据挖掘和统计分析技术

本课程将对基于Python和R语言进行数据处理、数据探索的基本方法,利用R语言实现模型选择、Logistic回归及决策树算法,以及贝叶斯算法及支持向量机、神经网络等算法原理及实现进行讲解。

第一讲 数据挖掘,Python和R简介

第二讲 数据的导入与导出

第三讲 数据可视化展现

第四讲 决策树与随机森林

第五讲 回归分析

第六讲 聚类分析

第七讲 离群点检测

第八讲 时间序列分析

第九讲 关联规则

第十讲 社交网络分析

八、大数据分析挖掘-基于Hadoop/Mahout/MLlib的大数据挖掘(含Spark、Storm和Docker应用介绍 )

本课程从大数据挖掘分析技术实战的角度,结合理论和实践,全方位地介绍Mahout和 MLlib等大数据挖掘工具的开发技巧。本课程涉及的主题包括:大数据挖掘及其背景,Mahout和 MLlib大数据挖掘工具,推荐系统及电影推荐案例,分类技术及聚类分析,以及与流挖掘和Docker技术的结合,分析了大数据挖掘前景分析。

本课程教学过程中还提供了案例分析来帮助学员了解如何用Mahout和 MLlib挖掘工具来解决具体的问题,并介绍了从大数据中挖掘出有价值的信息的关键。

第一讲 大数据挖掘及其背景

第二讲 MapReduce/DAG计算模式

第三讲 云挖掘工具Mahout/MLib

第四讲 推荐系统及其应用开发

第五讲 分类技术及其应用

第六讲 聚类技术及其应用

第七讲 关联规则和相似项发现

第八讲 流数据挖掘相关技术

第九讲 云环境下大数据挖掘应用

九、Spark大数据挖掘工具MLlib实战(机器学习)

本课程主要讲解Spark MLlib,Spark MLlib是一种高效、快速、可扩展的分布式计算框架,实现了常用的机器学习,如:聚类、分类、回归等算法。讲解各个算法的理论、详细展示Spark源码实现,最后均会通过实例进行解析实战,帮助大家真正从理论到实践全面掌握Spark MLlib分布式机器学习和大数据挖掘方法。

第一讲 Spark大数据实时处理技术

 


推荐阅读
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 大数据领域的职业路径与角色解析
    本文将深入探讨大数据领域的各种职业和工作角色,帮助读者全面了解大数据行业的需求、市场趋势,以及从入门到高级专业人士的职业发展路径。文章还将详细介绍不同公司对大数据人才的需求,并解析各岗位的具体职责、所需技能和经验。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • 本文介绍如何通过整合SparkSQL与Hive来构建高效的用户画像环境,提高数据处理速度和查询效率。 ... [详细]
  • 初探Hadoop:第一章概览
    本文深入探讨了《Hadoop》第一章的内容,重点介绍了Hadoop的基本概念及其如何解决大数据处理中的关键挑战。 ... [详细]
  • Hadoop 2.6 主要由 HDFS 和 YARN 两大部分组成,其中 YARN 包含了运行在 ResourceManager 的 JVM 中的组件以及在 NodeManager 中运行的部分。本文深入探讨了 Hadoop 2.6 日志文件的解析方法,并详细介绍了 MapReduce 日志管理的最佳实践,旨在帮助用户更好地理解和优化日志处理流程,提高系统运维效率。 ... [详细]
  • Hadoop + Spark安装(三) —— 调hadoop
    ***************************测试hadoop及问题跟进***************************执行以下语句报错datahadoop-2.9. ... [详细]
  • 本文详细记录了 MIT 6.824 课程中 MapReduce 实验的开发过程,包括环境搭建、实验步骤和具体实现方法。 ... [详细]
  • 本文详细介绍了 Spark 中的弹性分布式数据集(RDD)及其常见的操作方法,包括 union、intersection、cartesian、subtract、join、cogroup 等转换操作,以及 count、collect、reduce、take、foreach、first、saveAsTextFile 等行动操作。 ... [详细]
  • Zookeeper作为Apache Hadoop生态系统中的一个重要组件,主要致力于解决分布式应用中的常见数据管理难题。它提供了统一的命名服务、状态同步服务以及集群管理功能,有效提升了分布式系统的可靠性和可维护性。此外,Zookeeper还支持配置管理和临时节点管理,进一步增强了其在复杂分布式环境中的应用价值。 ... [详细]
  • 技术日志:深入探讨Spark Streaming与Spark SQL的融合应用
    技术日志:深入探讨Spark Streaming与Spark SQL的融合应用 ... [详细]
  • 在Linux系统中,原本已安装了多个版本的Python 2,并且还安装了Anaconda,其中包含了Python 3。本文详细介绍了如何通过配置环境变量,使系统默认使用指定版本的Python,以便在不同版本之间轻松切换。此外,文章还提供了具体的实践步骤和注意事项,帮助用户高效地管理和使用不同版本的Python环境。 ... [详细]
  • 深入理解Spark框架:RDD核心概念与操作详解
    RDD是Spark框架的核心计算模型,全称为弹性分布式数据集(Resilient Distributed Dataset)。本文详细解析了RDD的基本概念、特性及其在Spark中的关键操作,包括创建、转换和行动操作等,帮助读者深入理解Spark的工作原理和优化策略。通过具体示例和代码片段,进一步阐述了如何高效利用RDD进行大数据处理。 ... [详细]
  • 大数据深度解读系列官网资源分享 ... [详细]
  • 前期Linux环境准备1.修改Linux主机名2.修改IP3.修改主机名和IP的映射关系4.关闭防火墙5.ssh免登陆6.安装JDK,配置环境变量等集群规划主机 IP安装软件运行进 ... [详细]
author-avatar
fghnh102_441
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有