热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

排队论模型(八):Matlab生成随机数、排队模型的计算机模拟

排队论模型(一):基本概念、输入过程与服务时间的常用概率分布排队论模型(二):生灭过程、MMs

排队论模型(一):基本概念、输入过程与服务时间的常用概率分布

排队论模型(二):生灭过程 、 M / M /s 等待制排队模型、多服务台模型

排队论模型(三):M / M / s/ s 损失制排队模型

排队论模型(四):M / M / s 混合制排队模型

排队论模型(五): 有限源排队模型、服务率或到达率依赖状态的排队模型

排队论模型(六):非生灭过程排队模型、爱尔朗(Erlang)排队模型

排队论模型(七):排队系统的优化

排队论模型(八):Matlab 生成随机数、排队模型的计算机模拟



目录

1 产生给定分布的随机数的方法

(i)反变换法

(ii)卷积法

(iii)取舍法

2 排队模型的计算机模拟

2.1 确定随机变量概率分布的常用方法

 2 .2  计算机模拟




1 产生给定分布的随机数的方法

Matlab 可以产生常用分布的随机数。下面我们介绍按照给定的概率分布产生随机数的一般方法,这些方法都以U(0,1) 分布的随机变量为基础。


(i)反变换法

定理 设 X 是一个具有连续分布函数 F(x) 的随机变量,则 F(X ) 在 [0,1] 上服 从均匀分布。


(ii)卷积法


(iii)取舍法

若随机变量 X 在有限区间(a,b) 内变化,但概率密度 f (x)具有任意形式(甚至没 有解析表达式),无法用前面的方法产生时,可用取舍法。一种比较简单的取舍法的步 骤是:


2 排队模型的计算机模拟


2.1 确定随机变量概率分布的常用方法

在模拟一个带有随机因素的实际系统时,究竟用什么样的概率分布描述问题中的随 机变量,是我们总是要碰到的一个问题,下面简单介绍确定分布的常用方法:

【1 】根据一般知识和经验,可以假定其概率分布的形式,如顾客到达间隔服从指数 分布 Exp(λ) ;产品需求量服从正态分布 \large N(\mu ,\sigma ^{2})  ;订票后但未能按时前往机场登机 的人数服从二项分布 B(n, p) 。然后由实际数据估计分布的参数 λ,μ,σ 等,参数估计 可用极大似然估计、矩估计等方法。

【2】 直接由大量的实际数据作直方图,得到经验分布,再通过假设检验,拟合分布 函数,可用 \large \chi ^{2} 检验等方法。 3 o 既缺少先验知识,又缺少数据时,对区间(a,b) 内变化的随机变量,可选用 Beta 分布(包括均匀分布)。先根据经验确定随机变量的均值 μ 和频率最高时的数值(即密度函数的最大值点)m ,则 Beta 分布中的参数 \large \alpha _{1}\: ,\alpha _{2}  可由以下关系求出:


 2 .2  计算机模拟

当排队系统的到达间隔时间和服务时间的概率分布很复杂时,或不能用公式给出 时,那么就不能用解析法求解。这就需用随机模拟法求解,现举例说明。

例 14 设某仓库前有一卸货场,货车一般是夜间到达,白天卸货,每天只能卸货 2 车,若一天内到达数超过 2 车,那么就推迟到次日卸货。根据表 3 所示的数据,货车到 达数的概率分布(相对频率)平均为 1.5 车/天,求每天推迟卸货的平均车数。

解 这是单服务台的排队系统,可验证到达车数不服从泊松分布,服务时间也不服 从指数分布(这是定长服务时间)。 随机模拟法首先要求事件能按历史的概率分布规律出现。模拟时产生的随机数与事 件的对应关系如表 4。

我们用 a1 表示产生的随机数,a2 表示到达的车数,a3 表示需要卸货车数,a4 表 示实际卸货车数,a5 表示推迟卸货车数。编写程序如下:

clear
rand('state',sum(100*clock));
n=50000;
m=2
a1=rand(n,1);
a2=a1; %a2初始化
a2(find(a1<0.23))=0;
a2(find(0.23<=a1&a1<0.53))=1;
a2(find(0.53<=a1&a1<0.83))=2;
a2(find(0.83<=a1&a1<0.93),1)=3;
a2(find(0.93<=a1&a1<0.98),1)=4;
a2(find(a1>=0.98))=5;
a3=zeros(n,1);a4=zeros(n,1);a5=zeros(n,1); %a2初始化
a3(1)=a2(1);
if a3(1)<=ma4(1)=a3(1);a5(1)=0;
elsea4(1)=m;a5(1)=a2(1)-m;
end
for i=2:na3(i)=a2(i)+a5(i-1);if a3(i)<=ma4(i)=a3(i);a5(i)=0;elsea4(i)=m;a5(i)=a3(i)-m;end
end
a=[a1,a2,a3,a4,a5];
sum(a)/n

例 15 银行计划安置自动取款机,已知 A 型机的价格是 B 型机的 2 倍,而 A 型机 的性能—平均服务率也是 B 型机的 2 倍,问应该购置 1 台 A 型机还是 2 台 B 型机。 为了通过模拟回答这类问题,作如下具体假设,顾客平均每分钟到达 1 位, A 型 机的平均服务时间为 0.9 分钟, B 型机为 1.8 分钟,顾客到达间隔和服务时间都服从 指数分布,2 台 B 型机采取 M / M / 2 模型(排一队),用前 100 名顾客(第 1 位顾客到 达时取款机前为空)的平均等待时间为指标,对 A 型机和 B 型机分别作 1000 次模拟, 进行比较。

在模拟 A 型机时,我们用cspan表示到达间隔时间,sspan表示服务时间,ctime 表示到达时间,gtime表示离开时间,wtime表示等待时间。我们总共模拟了m 次, 每次n 个顾客。程序如下:

tic
rand(&#39;state&#39;,sum(100*clock));
n=100;m=1000;mu1=1;mu2=0.9;
for j=1:mcspan=exprnd(mu1,1,n);sspan=exprnd(mu2,1,n);ctime(1)=cspan(1);gtime(1)=ctime(1)+sspan(1);wtime(1)=0;for i=2:nctime(i)=ctime(i-1)+cspan(i);gtime(i)=max(ctime(i),gtime(i-1))+sspan(i);wtime(i)=max(0,gtime(i-1)-ctime(i));endresult1(j)=sum(wtime)/n;
end
result_1=sum(result1)/m
toc

类似地,模拟 B 型机的程序如下:

tic
rand(&#39;state&#39;,sum(100*clock));
n=100;m=1000;mu1=1;mu2=1.8;
for j=1:mcspan=exprnd(mu1,1,n);sspan=exprnd(mu2,1,n);ctime(1)=cspan(1);ctime(2)=ctime(1)+cspan(2);gtime(1:2)=ctime(1:2)+sspan(1:2);wtime(1:2)=0;flag=gtime(1:2);for i=3:nctime(i)=ctime(i-1)+cspan(i);gtime(i)=max(ctime(i),min(flag))+sspan(i);wtime(i)=max(0,min(flag)-ctime(i));flag=[max(flag),gtime(i)];endresult2(j)=sum(wtime)/n;
end
result_2=sum(result2)/m
toc

读者可以用下面的程序与上面的程序比较了解编程的效率问题。

tic
clear
rand(&#39;state&#39;,sum(100*clock));
n=100;m=1000;mu1=1;mu2=0.9;
for j=1:mctime(1)=exprnd(mu1);gtime(1)=ctime(1)+exprnd(mu2);wtime(1)=0;for i=2:nctime(i)=ctime(i-1)+exprnd(mu1);gtime(i)=max(ctime(i),gtime(i-1))+exprnd(mu2);wtime(i)=max(0,gtime(i-1)-ctime(i));endresult(j)=sum(wtime)/n;
end
result=sum(result)/m
toc


1. 一个车间内有10台相同的机器,每台机器运行时每小时能创造4元的利润,且平 均每小时损坏一次。而一个修理工修复一台机器平均需4小时。以上时间均服从指数分 布。设一名修理工一小时工资为6元,试求:

(i)该车间应设多少名修理工,使总费用为最小;

(ii)若要求不能运转的机器的期望数小于4台,则应设多少名修理工;

(iii)若要求损坏机器等待修理的时间少于4小时,又应设多少名修理工。

2. 到达某铁路售票处顾客分两类:一类买南方线路票,到达率为λ1 /小时,另一 类买北方线路票,到达率为λ2 /小时,以上均服从泊松分布。该售票处设两个窗口,各窗口服务一名顾客时间均服从参数 μ = 10 的指数分布。试比较下列情况时顾客分别等 待时间Wq :

(i)两个窗口分别售南方票和北方票;

(ii)每个窗口两种票均出售。(分别比较 λ1 = λ2 = 2,4,6,8 时的情形)

3. 一名修理工负责5台机器的维修,每台机器平均每2h损坏一次,又修理工修复一 台机器平均需时18.75min,以上时间均服从负指数分布。试求:

(1)所有机器均正常运转的概率;

(2)等待维修的机器的期望数;

(3)假如希望做到有一半时间所有机器都正常运转,则该修理工最多看管多少台 机器。

(4)假如维修工工资为8元/h,机器不能正常运转时的损失为40元/h,则该修理工 看管多少台机器较为经济合理。



排队论模型(一):基本概念、输入过程与服务时间的常用概率分布

排队论模型(二):生灭过程 、 M / M /s 等待制排队模型、多服务台模型

排队论模型(三):M / M / s/ s 损失制排队模型

排队论模型(四):M / M / s 混合制排队模型

排队论模型(五): 有限源排队模型、服务率或到达率依赖状态的排队模型

排队论模型(六):非生灭过程排队模型、爱尔朗(Erlang)排队模型

排队论模型(七):排队系统的优化

排队论模型(八):Matlab 生成随机数、排队模型的计算机模拟



 


推荐阅读
  • 本文介绍如何使用 Python 的 DOM 和 SAX 方法解析 XML 文件,并通过示例展示了如何动态创建数据库表和处理大量数据的实时插入。 ... [详细]
  • javascript分页类支持页码格式
    前端时间因为项目需要,要对一个产品下所有的附属图片进行分页显示,没考虑ajax一张张请求,所以干脆一次性全部把图片out,然 ... [详细]
  • 重要知识点有:函数参数默许值、盈余参数、扩大运算符、new.target属性、块级函数、箭头函数以及尾挪用优化《深切明白ES6》笔记目次函数的默许参数在ES5中,我们给函数传参数, ... [详细]
  • 深入解析 Lifecycle 的实现原理
    本文将详细介绍 Android Jetpack 中 Lifecycle 组件的实现原理,帮助开发者更好地理解和使用 Lifecycle,避免常见的内存泄漏问题。 ... [详细]
  • 解决Bootstrap DataTable Ajax请求重复问题
    在最近的一个项目中,我们使用了JQuery DataTable进行数据展示,虽然使用起来非常方便,但在测试过程中发现了一个问题:当查询条件改变时,有时查询结果的数据不正确。通过FireBug调试发现,点击搜索按钮时,会发送两次Ajax请求,一次是原条件的请求,一次是新条件的请求。 ... [详细]
  • poj 3352 Road Construction ... [详细]
  • Basic微分方程Whatis形如\(F(x,y,y',,y^{(n)})0\)求\(yf(x,y)\)阶:方程中导数的最高阶数解:yy(x)通解:\(yy(x,C ... [详细]
  • 在2019中国国际智能产业博览会上,百度董事长兼CEO李彦宏强调,人工智能应务实推进其在各行业的应用。随后,在“ABC SUMMIT 2019百度云智峰会”上,百度展示了通过“云+AI”推动AI工业化和产业智能化的最新成果。 ... [详细]
  • 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4277。作者:Bob Lee,日期:2012年9月15日。题目描述:给定n个木棍,求可以组成的不同三角形的数量,最多15根木棍。 ... [详细]
  • 本文详细介绍了MySQL数据库的基础语法与核心操作,涵盖从基础概念到具体应用的多个方面。首先,文章从基础知识入手,逐步深入到创建和修改数据表的操作。接着,详细讲解了如何进行数据的插入、更新与删除。在查询部分,不仅介绍了DISTINCT和LIMIT的使用方法,还探讨了排序、过滤和通配符的应用。此外,文章还涵盖了计算字段以及多种函数的使用,包括文本处理、日期和时间处理及数值处理等。通过这些内容,读者可以全面掌握MySQL数据库的核心操作技巧。 ... [详细]
  • 使用Jsoup解析并遍历HTML文档时,该库能够高效地生成一个清晰、规范的解析树,即使源HTML文档存在格式问题。Jsoup具备强大的容错能力,能够处理多种异常情况,如未闭合的标签等,确保解析结果的准确性和完整性。 ... [详细]
  • 如何使用 `org.opencb.opencga.core.results.VariantQueryResult.getSource()` 方法及其代码示例详解 ... [详细]
  • 本报告对2018年湘潭大学程序设计竞赛在牛客网上的时间数据进行了详细分析。通过统计参赛者在各个时间段的活跃情况,揭示了比赛期间的编程频率和时间分布特点。此外,报告还探讨了选手在准备过程中面临的挑战,如保持编程手感、学习逆向工程和PWN技术,以及熟悉Linux环境等。这些发现为未来的竞赛组织和培训提供了 valuable 的参考。 ... [详细]
  • 如何将Python与Excel高效结合:常用操作技巧解析
    本文深入探讨了如何将Python与Excel高效结合,涵盖了一系列实用的操作技巧。文章内容详尽,步骤清晰,注重细节处理,旨在帮助读者掌握Python与Excel之间的无缝对接方法,提升数据处理效率。 ... [详细]
  • Codeforces竞赛解析:Educational Round 84(Div. 2评级),题目A:奇数和问题
    Codeforces竞赛解析:Educational Round 84(Div. 2评级),题目A:奇数和问题 ... [详细]
author-avatar
想飞的糊涂虫
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有