热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

PaddleX数据标注与Halcon数据标注与转换

PaddleX数据标注与Halcon数据标注与转换一、简介二、PaddleX数据标注2.1Labelme数据标注2.2json数据转换三、Halcon数据标注3.1MVTecDee




PaddleX数据标注与Halcon数据标注与转换


  • 一、简介
  • 二、PaddleX数据标注
    • 2.1Labelme数据标注
    • 2.2json数据转换

  • 三、Halcon数据标注
    • 3.1MVTec Deep Learning Tool下载安装
    • 3.2数据标注与导出

  • 四、Halcon中使用PaddleX标注的数据
    • 4.1PaddleX标注的数据转换为Halcon标注数据
    • 4.2Labelme标注的数据转换为Halcon标注数据

  • 参考文档



一、简介

PaddleX为百度飞浆开发的一种开源的深度学习架构,可用于目标检测、语义分割等任务,相较于TensorFlow、Pytorch两种开源架构搭建、训练模型简单,代码量少,易上手。
Halcon作为一款商业机器视觉软件开发包,可用于图像处理与深度学习,使用效果要优于多数开源软件。
本文主要记录了在语义分割任务中PaddleX与Halcon数据标注的实现流程,及在Halcon中使用PaddleX标注的数据的方法和相应代码。


二、PaddleX数据标注

PaddleX中数据标注工具为labelme,labelme支持标注矩形框和多边形,可分别应用于目标识别与语义分割任务,且为语义分割任务标注的多边形还可应用于目标识别任务,无需二次标注。
下面介绍在语义分割任务中PaddleX数据标注。


2.1Labelme数据标注

labelme运行在python环境中,使用前需进行安装。
在这里插入图片描述
上图为labelme标注药片表面缺陷示意图,标注完成后会在图片同路径下生成一个json文件,文件中包含标签名、标注的多边形坐标点及原始图片base64编码。
在这里插入图片描述


2.2json数据转换

PaddleX中语义分割任务训练需要使用的数据包含两部分,一部分为原始图片,一部分为标注图片,标注图片为只包含以一定颜色填充的标注区域的图片。而labelme标注后得到的是json数据,因此需要进行转换,在PaddleX中提供了转换工具,转换命令如下:

paddlex --data_conversion --source labelme --to SEG --pics ./ --annotations ./ --save_dir ./data

生成文件如下:
在这里插入图片描述
JPEGImages文件夹中存储原始图片,Annotations中存储标注图片,如下:
在这里插入图片描述

在这里插入图片描述
PaddleX数据标注完成。


三、Halcon数据标注

Halcon数据标注一般使用官方给出的标注工具:MVTec Deep Learning Tool,该工具未集成在Halcon软件中,需单独进行下载。


3.1MVTec Deep Learning Tool下载安装

官网下载地址为https://www.mvtec.com/downloads/deep-learning-tool,官网提供免费下载,但下载需要填写邮箱、姓名、电话等信息进行账户注册,需提供真实邮箱以接收验证码。
进入下载界面后,选择DEEP LEARNING TOOL最新版本即可,该版本与使用的Halcon版本不存在对应关系,本文下载的版本为DEEP LEARNING TOOL 22.10,使用的Halcon版本为19.05。
在这里插入图片描述
下载后进行安装,需要注意的是该工具安装界面为网页,即在网页上进行软件安装,安装之后打开软件,主界面如下:
在这里插入图片描述


3.2数据标注与导出

打开软件后,选择创建新项目,选择深度学习方法,可以看到支持图像分类、对象检测、语义分割、实例分割等任务,这里选择语义分割,输入项目名称与保存路径进行创建。
在这里插入图片描述
创建项目后,添加图像,点击菜单栏的“图像”,开始标注:
在这里插入图片描述
首先单击标签类别旁边的加号+,添加标签,输入类别名称,选择需要的高亮颜色。在Halcon中除自己添加的标签类别外还有一个自动生成的背景类别标签,导出数据时,每个未标注的像素都将属于背景。
在这里插入图片描述
在图片上标注时可以选择多边形或遮罩,视待标注对象的性质而定,其中一种方法可能更适用。 根据经验,如果对象的标签由较大的边缘平整的区域组成,则使用多边形;如果对象较小或需要修正某现有标签,则使用遮罩。但是,多边形或遮罩始终可以相互转换。
在这里插入图片描述
完成标注后选择菜单栏的导出数据集。
在这里插入图片描述
导出时勾选“将图像复制到文件夹…”。
在这里插入图片描述
导出完成后会生成两个文件夹和一个hdict文件,如下图:
在这里插入图片描述
test_pill_images文件夹保存原始图片,test_pill_labels保存标注图片,需要注意的是打开标注图片后,会发现标注区域不可见,原因是Halcon导出时是使用标签类别的索引值如1作为灰度值填充,而不像是PaddleX中以可见灰度值如128填充。
在这里插入图片描述
Halcon数据标注完成。


四、Halcon中使用PaddleX标注的数据

在进行语义分割时数据标注过程费时费力,如果使用多个架构进行试验而只需进行一次标注,那么工作效率就会大幅度提升。


4.1PaddleX标注的数据转换为Halcon标注数据

将PaddleX标注的数据转换为Halcon标注数据,其实就是将PaddleX标注图片中的灰度值转换为Halcon中以标签类别的索引值写入的灰度值,主要涉及到像素灰度值读写,下面给出以opencv实现的python代码,值得注意的是标签类别索引以1开始,因为0默认为背景:

def SetImagePixelValues(FilePathList):
for i in range(len(FilePathList)):
for dirpath,dirnames,filenames in os.walk(FilePathList[i]):
filenames=filter(lambda filename:filename[-4:]=='.png',filenames)
for filename in filenames:
img_color=cv2.imread(dirpath+"/"+filename,cv2.IMREAD_UNCHANGED)
img_gray=cv2.cvtColor(img_color,cv2.COLOR_RGB2GRAY)
imgWidth=img_gray.shape[1]
imgHeight=img_gray.shape[0]
for j in range(imgWidth):
for k in range(imgHeight):
value=img_gray[k,j]
if value > 0:
img_gray[k,j]=(i+1)
cv2.imwrite(dirpath+"/"+filename,img_gray)
print(dirpath+"/"+filename)

这里传入的FilePathList变量是存放各类标签图片的文件夹路径列表。


4.2Labelme标注的数据转换为Halcon标注数据

将labelme标注的数据转换为Halcon标注数据,分为两步,第一步是将json数据转换为图片数据,labelme中有单个数据转换的程序示例,加以改动为多个数据转换即可,但程序中未显式设置转换后的标注区域灰度值,所以需要进行第二步,第二步即4.1节所述。
json数据转换为图片数据python代码如下:

def main(JsonFilePathlist, label_name_to_value):
for i in range(len(JsonFilePathlist)):
jsonfiles=[]
jsonfilenames=[]
out_dir=JsonFilePathlist[i]
if not osp.exists(out_dir+"/images"):
os.mkdir(out_dir+"/images")
if not osp.exists(out_dir+"/labels"):
os.mkdir(out_dir+"/labels")
for dirpath,dirnames,filenames in os.walk(JsonFilePathlist[i]):
filenames=filter(lambda filename:filename[-5:]=='.json',filenames)
filenames01=copy.deepcopy(filenames)
jsonfilenames.extend(filenames01)
filenames=map(lambda filename:os.path.join(dirpath,filename),filenames)
jsonfiles.extend(filenames)
for j in range(len(jsonfiles)):
data = json.load(open(jsonfiles[j]))
imageData = data.get("imageData")
if not imageData:
imagePath = os.path.join(os.path.dirname(jsonfiles[j]), data["imagePath"])
with open(imagePath, "rb") as f:
imageData = f.read()
imageData = base64.b64encode(imageData).decode("utf-8")
img = utils.img_b64_to_arr(imageData)
for shape in sorted(data["shapes"], key=lambda x: x["label"]):
label_name = shape["label"]
if label_name in label_name_to_value:
label_value = label_name_to_value[label_name]
else:
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value
lbl, _ = utils.shapes_to_label(
img.shape, data["shapes"], label_name_to_value
)
label_names = [None] * (max(label_name_to_value.values()) + 1)
for name, value in label_name_to_value.items():
label_names[value] = name
lbl_viz = imgviz.label2rgb(
label=lbl, img=imgviz.asgray(img), label_names=label_names, loc="rb"
)
PIL.Image.fromarray(img).save(osp.join(out_dir, "images/"+jsonfilenames[j][0:-5]+".png"))
utils.lblsave(osp.join(out_dir, "labels/"+jsonfilenames[j][0:-5]+".png"), lbl)
# PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, "label_viz.png"))
# with open(osp.join(out_dir, "label_names.txt"), "w") as f:
# for lbl_name in label_names:
# f.write(lbl_name + "\n")
# logger.info("Saved to: {}".format(out_dir))
logger.info(jsonfiles[j])

这里传入的JsonFilePathlist变量是存放各类标签json文件的文件夹路径列表,label_name_to_value是标签类别名称与标签类别索引的字典,包括背景,示例定义如下:

label_name_to_value={}
label_name_to_value["_background_"]=0
label_name_to_value["Label01"]=1
label_name_to_value["Label02"]=2
label_name_to_value["Label03"]=3
label_name_to_value["Label04"]=4
label_name_to_value["Label05"]=5
label_name_to_value["Label06"]=6
label_name_to_value["Label07"]=7
label_name_to_value["Label08"]=8

参考文档

Halcon深度学习2 – 标注工具Deep Learning Tool下载安装
如何通过labelme标注将json文件转为png的label







推荐阅读
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • 基因组浏览器中的Wig格式解析
    本文详细介绍了Wiggle(Wig)格式及其在基因组浏览器中的应用,涵盖variableStep和fixedStep两种主要格式的特点、适用场景及具体使用方法。同时,还提供了关于数据值和自定义参数的补充信息。 ... [详细]
  • Scala 实现 UTF-8 编码属性文件读取与克隆
    本文介绍如何使用 Scala 以 UTF-8 编码方式读取属性文件,并实现属性文件的克隆功能。通过这种方式,可以确保配置文件在多线程环境下的一致性和高效性。 ... [详细]
  • Unity编辑器插件:NGUI资源引用检测工具
    本文介绍了一款基于NGUI的资源引用检测工具,该工具能够帮助开发者快速查找和管理项目中的资源引用。其功能涵盖Atlas/Sprite、字库、UITexture及组件的引用检测,并提供了替换和修复功能。文末提供源码下载链接。 ... [详细]
  • Kubernetes 持久化存储与数据卷详解
    本文深入探讨 Kubernetes 中持久化存储的使用场景、PV/PVC/StorageClass 的基本操作及其实现原理,旨在帮助读者理解如何高效管理容器化应用的数据持久化需求。 ... [详细]
  • 优化SQL Server批量数据插入存储过程的实现
    本文介绍了一种改进的SQL Server存储过程,用于生成批量插入语句。该方法不仅提高了性能,还支持单行和多行模式,适用于SQL Server 2005及以上版本。 ... [详细]
  • 本文介绍了如何使用JQuery实现省市二级联动和表单验证。首先,通过change事件监听用户选择的省份,并动态加载对应的城市列表。其次,详细讲解了使用Validation插件进行表单验证的方法,包括内置规则、自定义规则及实时验证功能。 ... [详细]
  • 根据最新发布的《互联网人才趋势报告》,尽管大量IT从业者已转向Python开发,但随着人工智能和大数据领域的迅猛发展,仍存在巨大的人才缺口。本文将详细介绍如何使用Python编写一个简单的爬虫程序,并提供完整的代码示例。 ... [详细]
  • 通过与阿里云的合作,牛客网成功解决了跨国视频面试中的网络卡顿问题,为求职者和面试官提供了更加流畅的沟通体验。 ... [详细]
  • 本文探讨了如何在 PHP 的 Eloquent ORM 中实现数据表之间的关联查询,并通过具体示例详细解释了如何将关联数据嵌入到查询结果中。这不仅提高了数据查询的效率,还简化了代码逻辑。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 解决Anaconda安装TensorFlow时遇到的TensorBoard版本问题
    本文介绍了在使用Anaconda安装TensorFlow时遇到的“Could not find a version that satisfies the requirement tensorboard”错误,并提供详细的解决方案,包括创建虚拟环境和配置PyCharm项目。 ... [详细]
  • 解决TensorFlow CPU版本安装中的依赖问题
    本文记录了在安装CPU版本的TensorFlow过程中遇到的依赖问题及解决方案,特别是numpy版本不匹配和动态链接库(DLL)错误。通过详细的步骤说明和专业建议,帮助读者顺利安装并使用TensorFlow。 ... [详细]
  • 本文介绍了如何利用TensorFlow框架构建一个简单的非线性回归模型。通过生成200个随机数据点进行训练,模型能够学习并预测这些数据点的非线性关系。 ... [详细]
author-avatar
yishengyishi2004929_621_834
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有