热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

POJ3641(快速幂)判断a^p=a(modp)是否成立

DescriptionFermatstheoremstatesthatforanyprimenumberpandforanyintegera

Description

Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0

Sample Output

no
no
yes
no
yes
yes

如果p是素数,输出no;如果p不是素数,判断a^p对p取余是否等于a。
 1 #include
 2 #include
 3 __int64 f(__int64 a,__int64 b)
 4 {
 5     __int64 c=b,t=1;
 6     while(b)
 7     {
 8         if(b % 2 != 0)
 9         {
10             t=t*a%c;
11         }
12         a=a*a%c;
13         b/=2;
14     }
15     return t%c;
16 }
17 __int64 f2(__int64 a)
18 {
19     __int64 i;
20     if(a <= 1 || a % 2 == 0) return 0;
21     for(i=3;i<=sqrt(a);i++)
22     {
23         if(a % i == 0) return 0;
24     }
25     return 1;
26 }
27 int main()
28 {
29     
30     __int64 p,a;
31     while(scanf("%I64d %I64d",&p,&a) && p && a)
32     {
33         if(f2(p) == 1) printf("no\n");
34         else
35         {
36             if(f(a,p) == a) printf("yes\n");
37             else 
38             printf("no\n");
39         }
40         
41     }
42 }

 

 

推荐阅读
  • 具备括号和分数功能的高级四则运算计算器
    本研究基于C语言开发了一款支持括号和分数运算的高级四则运算计算器。该计算器通过模拟手算过程,对每个运算符进行优先级标记,并按优先级从高到低依次执行计算。其中,加减运算的优先级最低,为0。此外,该计算器还支持复杂的分数运算,能够处理包含括号的表达式,提高了计算的准确性和灵活性。 ... [详细]
  • Android中将独立SO库封装进JAR包并实现SO库的加载与调用
    在Android开发中,将独立的SO库封装进JAR包并实现其加载与调用是一个常见的需求。本文详细介绍了如何将SO库嵌入到JAR包中,并确保在外部应用调用该JAR包时能够正确加载和使用这些SO库。通过这种方式,开发者可以更方便地管理和分发包含原生代码的库文件,提高开发效率和代码复用性。文章还探讨了常见的问题及其解决方案,帮助开发者避免在实际应用中遇到的坑。 ... [详细]
  • 本文深入解析了 Kuangbin 数学训练营中的经典问题——Ekka Dokka,并通过详细的代码示例和数学推导,探讨了该问题的多种解法及其应用场景。通过对算法的优化和扩展,本文旨在为读者提供全面的理解和实用的参考。 ... [详细]
  • NOIP2000的单词接龙问题与常见的成语接龙游戏有异曲同工之妙。题目要求在给定的一组单词中,从指定的起始字母开始,构建最长的“单词链”。每个单词在链中最多可出现两次。本文将详细解析该题目的解法,并分享学习过程中的心得体会。 ... [详细]
  • 本文详细介绍了在CodeUp平台中实现大数进制转换的技术方法。具体而言,该问题要求将一个最多包含30位数字的十进制非负整数转换为二进制表示。输入数据包含多行,每行包含一个不超过30位的十进制非负整数。通过高效的算法设计,确保了大数转换的准确性和性能。 ... [详细]
  • 图论入门基础教程
    图论是计算机科学和数学中的重要分支,本教程旨在为初学者提供全面的基础知识。通过实例解析,如“昂贵的聘礼”问题,讲述了一个年轻探险家在印第安部落与酋长女儿的爱情故事,展示了图论在解决实际问题中的应用。教程内容涵盖了图的基本概念、表示方法以及常见算法,适合各类读者学习。 ... [详细]
  • 在Android开发中,实现多点触控功能需要使用`OnTouchListener`监听器来捕获触摸事件,并在`onTouch`方法中进行详细的事件处理。为了优化多点触控的交互体验,开发者可以通过识别不同的触摸手势(如缩放、旋转等)并进行相应的逻辑处理。此外,还可以结合`MotionEvent`类提供的方法,如`getPointerCount()`和`getPointerId()`,来精确控制每个触点的行为,从而提升用户操作的流畅性和响应性。 ... [详细]
  • 尽管我们尽最大努力,任何软件开发过程中都难免会出现缺陷。为了更有效地提升对支持部门的协助与支撑,本文探讨了多种策略和最佳实践,旨在通过改进沟通、增强培训和支持流程来减少这些缺陷的影响,并提高整体服务质量和客户满意度。 ... [详细]
  • 本文探讨了 Kafka 集群的高效部署与优化策略。首先介绍了 Kafka 的下载与安装步骤,包括从官方网站获取最新版本的压缩包并进行解压。随后详细讨论了集群配置的最佳实践,涵盖节点选择、网络优化和性能调优等方面,旨在提升系统的稳定性和处理能力。此外,还提供了常见的故障排查方法和监控方案,帮助运维人员更好地管理和维护 Kafka 集群。 ... [详细]
  • Codeforces 605C:Freelancer's Dreams —— 凸包算法解析与题解分析 ... [详细]
  • 在探讨P1923问题时,我们发现手写的快速排序在最后两个测试用例中出现了超时现象,这在意料之中,因为该题目实际上要求的是时间复杂度为O(n)的算法。进一步研究题解后,发现有选手使用STL中的`nth_element`函数成功通过了所有测试点。本文将详细分析这一现象,并提出相应的优化策略。 ... [详细]
  • 在Android应用开发中,实现与MySQL数据库的连接是一项重要的技术任务。本文详细介绍了Android连接MySQL数据库的操作流程和技术要点。首先,Android平台提供了SQLiteOpenHelper类作为数据库辅助工具,用于创建或打开数据库。开发者可以通过继承并扩展该类,实现对数据库的初始化和版本管理。此外,文章还探讨了使用第三方库如Retrofit或Volley进行网络请求,以及如何通过JSON格式交换数据,确保与MySQL服务器的高效通信。 ... [详细]
  • 如何利用Java 5 Executor框架高效构建和管理线程池
    Java 5 引入了 Executor 框架,为开发人员提供了一种高效管理和构建线程池的方法。该框架通过将任务提交与任务执行分离,简化了多线程编程的复杂性。利用 Executor 框架,开发人员可以更灵活地控制线程的创建、分配和管理,从而提高服务器端应用的性能和响应能力。此外,该框架还提供了多种线程池实现,如固定线程池、缓存线程池和单线程池,以适应不同的应用场景和需求。 ... [详细]
  • 第六章:枚举类型与switch结构的应用分析
    第六章深入探讨了枚举类型与 `switch` 结构在编程中的应用。枚举类型(`enum`)是一种将一组相关常量组织在一起的数据类型,广泛存在于多种编程语言中。例如,在 Cocoa 框架中,处理文本对齐时常用 `NSTextAlignment` 枚举来表示不同的对齐方式。通过结合 `switch` 结构,可以更清晰、高效地实现基于枚举值的逻辑分支,提高代码的可读性和维护性。 ... [详细]
  • 技术日志:使用 Ruby 爬虫抓取拉勾网职位数据并生成词云分析报告
    技术日志:使用 Ruby 爬虫抓取拉勾网职位数据并生成词云分析报告 ... [详细]
author-avatar
shangce
这个家伙很懒,什么也没留下!
Tags | 热门标签
RankList | 热门文章
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有