题目背景:在一个尺寸为(n+1)×(n+1)的网格中,中心存在一个尺寸为(n-1)×(n-1)的空白区域。任务是使用1×2的矩形砖块来完全覆盖剩余的区域,不允许砖块重叠或超出边界。需要计算所有可能的铺设方式的数量。
理论依据:该问题可以通过数学模型解决,具体公式参考论文《Tiling with Dominoes and Fibonacci Numbers》(链接:http://www.math.unam.mx/EMIS/journals/JIS/VOL7/Tauraso/tauraso3.pdf)。论文中详细介绍了利用斐波那契数列来计算此类问题的方法。
以下是基于上述理论的C++代码实现:
#include
#include
#include
#include
#include
using namespace std;
const int BASE = 10000;
class BigInteger {
public:
int length;
int digits[2500];
BigInteger();
BigInteger operator+(const BigInteger&);
BigInteger operator-(const BigInteger&);
BigInteger operator*(const BigInteger&);
void print();
};
BigInteger::BigInteger() {
length = 1;
memset(digits, 0, sizeof(digits));
}
BigInteger BigInteger::operator+(const BigInteger& other) {
BigInteger result;
result.length = max(length, other.length);
for (int i = 0; i result.digits[i] += digits[i] + other.digits[i];
if (result.digits[i] >= BASE) {
result.digits[i + 1]++;
result.digits[i] -= BASE;
}
}
if (result.digits[result.length] > 0) result.length++;
return result;
}
BigInteger BigInteger::operator-(const BigInteger& other) {
BigInteger result(*this);
for (int i = 0; i result.digits[i] -= other.digits[i];
if (result.digits[i] <0) {
result.digits[i] += BASE;
result.digits[i + 1]--;
}
}
while (result.digits[result.length - 1] == 0 && result.length > 1) result.length--;
return result;
}
BigInteger BigInteger::operator*(const BigInteger& other) {
BigInteger result;
result.length = length + other.length - 1;
for (int i = 0; i for (int j = 0; j result.digits[i + j] += digits[i] * other.digits[j];
if (result.digits[i + j] >= BASE) {
result.digits[i + j + 1] += result.digits[i + j] / BASE;
result.digits[i + j] %= BASE;
}
}
}
if (result.digits[result.length] > 0) result.length++;
while (result.digits[result.length - 1] == 0 && result.length > 1) result.length--;
return result;
}
void BigInteger::print() {
printf("%d", digits[length - 1]);
for (int i = length - 2; i >= 0; --i) printf("%04d", digits[i]);
printf("\n");
}
BigInteger fib[10002];
int main() {
fib[1] = BigInteger();
fib[1].digits[0] = 1;
for (int i = 2; i <= 10000; ++i) {
fib[i] = fib[i - 1] + fib[i - 2];
}
int n;
while (scanf("%d", &n) != EOF) {
BigInteger result;
if (n % 2 == 1) {
result = fib[n] * fib[n] * 2 - 1;
} else {
result = fib[n] * fib[n] * 2 + 1;
}
result = result * result * 4;
result.print();
}
return 0;
}