热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

POJ2923Relocation装车问题【状态压缩DP】+【01背包】

题目链接:https:vjudge.netcontest103424#problemI转载于:大牛博客题目大意:有n个货物,并且知道了每个货物的重量,每次用载重量分别为c1,

题目链接:https://vjudge.net/contest/103424#problem/I

转载于:>>>大牛博客

题目大意:

有 n 个货物,并且知道了每个货物的重量,每次用载重量分别为c1,c2的火车装载,问最少需要运送多少次可以将货物运完。

解题分析:

物品个数最多是10个,可以用0和1分别表示物品是否被选中运送

假设有3个物品,那么可以用001表示当前这一次选择将第3个物品运走

那么,所有的状态可以用0~2^n-1对应的二进制数表示出来

对于上述每一种状态,选择其中可以一次运走的状态进行01背包

其中,所有位全部为1的二进制数表示背包总体积

每个物品的体积是该状态对应二进制数中1的个数

为了把物品全部运走,要选择一些状态把背包的1全部被填满

值得注意的是,因为一件物品不会被运2次,所以所有选取的状态应该是没有交集的

比如1001101和1110010是不行的,第一件物品被运了2次

然后为了使次数最小,可以将次数抽象成01背包中的物品价值,每种状态对应运送一次,价值是1

 

如何判断某种状态是否可以一次运走?

因为有2辆车,所以将要判断该状态是否能分成满足体积分别小于等于车体积的2份,

如何从十进制中取出该状态被选择的物体?

也就是将二进制中的1的位置取出来

利用 :>> :右移运算符 <<左移运算符  & 按位与运算符

假设有一个二进制数: x  =  01101

那么将它右移2位  : x>>=2,他会变成 00011(移出位被丢弃,左边移出的空位或者一律补0,或者补符号位)

我们知道1的二进制数是最后一位为1其他全为0,如果某数的二进制从又往左数第2位是1,移位之后这个1

变成最后一位,和二进制只有最后一位是1的数字1&之后还是1,而如果某数的二进制从又往左数第2位是0

的话,和二进制只有最后一位是1的数字1&之后将是0(因为1除了最后一位其他位全为0,而该数移位后最后一位是0)

综上所述      (x>>i)&1可以判断x从右往左第i位是0还是1【同理(x&(1<

知道怎么找到二进制数中1的位置基本状压的代码也不难懂了

#include  
#include  
#include<string>  
#include  
#include  
#include  
#define mem(a,x) memset(a,x,sizeof(a))  
#define inf 1<<30  
using namespace std;  
const double PI = acos(-1.0);  
typedef long long LL;  
int state[1030];  
int dp[1030];  
bool vis[1005];  
int n,v1,v2,tot;  
int c[12];  
bool ok(int x)//判断一种状态是否可行(可以一次运走)  
{  
    int sun = 0;  
    mem(vis,0);  
    vis[0] = 1;  
    for (int i = 0;i )  
    {  
        if ((x>>i)&1)  
        {  
            sun += c[i];  
            for (int j = v1;j >= c[i];j--) //这个真的非常巧妙 开始看半天都不懂,自己模拟一遍才懂  
            {                              //比如说此状态有c1、c2、c3,3个体积,第一次操作把体积c1标记为1,  
                  if (vis[j-c[i]])         //第二次操作把c2和c1+c2两种体积标记为1,第三次把c3和前面的组合标记为1,  
                    vis[j] = 1;            //最后这些体积能组合成的所有体积就都被标记成了1  
            }  
        }  
    }  
    if (sun > v1+v2)//装不下  
        return 0;  
    //总体积小不代表一定装得下,拆分成2份要2份都装得下  
    for (int i = 0;i <= v1;i++)  
    {  
        if (vis[i]&&sun-i <= v2)//如果存在(i,sun-i)这样的组合  
            return 1;           //满足i可以被v1装下(前面for循环是对于v1的,vis[i]表示体积i可以被v1装下),sun-i可以被v2装下  
    }  
    return 0;  
}  
void init()//初始化找到满足条件的状态  
{  
    tot = 0;  
    for (int i = 1;i <(1<)  
    {  
        dp[i] = inf;  
        if (ok(i))  
            state[tot++] = i;  
    }  
}  
int main()  
{  
    int T;  
    cin>>T;  
    int oo = 0;  
    while (T--)  
    {  
        cin>>n>>v1>>v2;  
        for (int i = 0;i )  
            scanf("%d",&c[i]);  
        init();  
        int V = (1<1;//V是n个1的二进制数  
        dp[0] = 0;//没有物品当然是0次运走  
        for (int i = 0;i )  
        {  
            for (int j = V;j >= 0;j--)  
            {  
                if (dp[j] == inf)  
                    continue;    //原版的背包是dp[j] = min(dp[j],dp[j-c[i]]+w[i])  
                                  //但是显然二进制不好表示减,但是可以用|抽象加  
                                  //这就相当于背包改版成dp[j+c[i]] = min(dp[j+c[i]],dp[j] + w[i])  
                if ((j&state[i])==0) //当然2种状态不能有交集  
                {  
                    dp[j|state[i]] = min(dp[j|state[i]] ,dp[j] + 1);  
                }  
  
            }  
        }  
        printf("Scenario #%d:\n%d\n",++oo,dp[V]);  
        if (T) puts("");  
    }  
    return 0;  
}  

2018-05-13

POJ 2923 Relocation 装车问题 【状态压缩DP】+【01背包】


推荐阅读
  • QUIC协议:快速UDP互联网连接
    QUIC(Quick UDP Internet Connections)是谷歌开发的一种旨在提高网络性能和安全性的传输层协议。它基于UDP,并结合了TLS级别的安全性,提供了更高效、更可靠的互联网通信方式。 ... [详细]
  • 深入理解OAuth认证机制
    本文介绍了OAuth认证协议的核心概念及其工作原理。OAuth是一种开放标准,旨在为第三方应用提供安全的用户资源访问授权,同时确保用户的账户信息(如用户名和密码)不会暴露给第三方。 ... [详细]
  • CSS 布局:液态三栏混合宽度布局
    本文介绍了如何使用 CSS 实现液态的三栏布局,其中各栏具有不同的宽度设置。通过调整容器和内容区域的属性,可以实现灵活且响应式的网页设计。 ... [详细]
  • 深入理解Cookie与Session会话管理
    本文详细介绍了如何通过HTTP响应和请求处理浏览器的Cookie信息,以及如何创建、设置和管理Cookie。同时探讨了会话跟踪技术中的Session机制,解释其原理及应用场景。 ... [详细]
  • 本文介绍了一款用于自动化部署 Linux 服务的 Bash 脚本。该脚本不仅涵盖了基本的文件复制和目录创建,还处理了系统服务的配置和启动,确保在多种 Linux 发行版上都能顺利运行。 ... [详细]
  • 在Linux系统中配置并启动ActiveMQ
    本文详细介绍了如何在Linux环境中安装和配置ActiveMQ,包括端口开放及防火墙设置。通过本文,您可以掌握完整的ActiveMQ部署流程,确保其在网络环境中正常运行。 ... [详细]
  • 如何在WPS Office for Mac中调整Word文档的文字排列方向
    本文将详细介绍如何使用最新版WPS Office for Mac调整Word文档中的文字排列方向。通过这些步骤,用户可以轻松更改文本的水平或垂直排列方式,以满足不同的排版需求。 ... [详细]
  • MySQL中枚举类型的所有可能值获取方法
    本文介绍了一种在MySQL数据库中查询枚举(ENUM)类型字段所有可能取值的方法,帮助开发者更好地理解和利用这一数据类型。 ... [详细]
  • 本文探讨了如何通过最小生成树(MST)来计算严格次小生成树。在处理过程中,需特别注意所有边权重相等的情况,以避免错误。我们首先构建最小生成树,然后枚举每条非树边,检查其是否能形成更优的次小生成树。 ... [详细]
  • 2023 ARM嵌入式系统全国技术巡讲旨在分享ARM公司在半导体知识产权(IP)领域的最新进展。作为全球领先的IP提供商,ARM在嵌入式处理器市场占据主导地位,其产品广泛应用于90%以上的嵌入式设备中。此次巡讲将邀请来自ARM、飞思卡尔以及华清远见教育集团的行业专家,共同探讨当前嵌入式系统的前沿技术和应用。 ... [详细]
  • 国内BI工具迎战国际巨头Tableau,稳步崛起
    尽管商业智能(BI)工具在中国的普及程度尚不及国际市场,但近年来,随着本土企业的持续创新和市场推广,国内主流BI工具正逐渐崭露头角。面对国际品牌如Tableau的强大竞争,国内BI工具通过不断优化产品和技术,赢得了越来越多用户的认可。 ... [详细]
  • Linux 系统启动故障排除指南:MBR 和 GRUB 问题
    本文详细介绍了 Linux 系统启动过程中常见的 MBR 扇区和 GRUB 引导程序故障及其解决方案,涵盖从备份、模拟故障到恢复的具体步骤。 ... [详细]
  • 几何画板展示电场线与等势面的交互关系
    几何画板是一款功能强大的物理教学软件,具备丰富的绘图和度量工具。它不仅能够模拟物理实验过程,还能通过定量分析揭示物理现象背后的规律,尤其适用于难以在实际实验中展示的内容。本文将介绍如何使用几何画板演示电场线与等势面之间的关系。 ... [详细]
  • 本文介绍如何通过Windows批处理脚本定期检查并重启Java应用程序,确保其持续稳定运行。脚本每30分钟检查一次,并在需要时重启Java程序。同时,它会将任务结果发送到Redis。 ... [详细]
  • 本文介绍如何在应用程序中使用文本输入框创建密码输入框,并通过设置掩码来隐藏用户输入的内容。我们将详细解释代码实现,并提供专业的补充说明。 ... [详细]
author-avatar
手机用户2702933940
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有