热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

基于OpenCV的图像拼接技术实践与示例代码解析

图像拼接技术在全景摄影中具有广泛应用,如手机全景拍摄功能,通过将多张照片根据其关联信息合成为一张完整图像。本文详细探讨了使用Python和OpenCV库实现图像拼接的具体方法,并提供了示例代码解析,帮助读者深入理解该技术的实现过程。

背景

图像拼接可以应用到手机中的全景拍摄,也就是将多张图片根据关联信息拼成一张图片;

实现步骤

1、读文件并缩放图片大小;

2、根据特征点和计算描述子,得到单应性矩阵;

3、根据单应性矩阵对图像进行变换,然后平移;

4、图像拼接并输出拼接后结果图;

一、读取文件

第一步实现读取两张图片并缩放到相同尺寸;

代码如下:

img1 = cv2.imread("map1.png")
img2 = cv2.imread("map2.png")

img1 = cv2.resize(img1, (640, 480))
img2 = cv2.resize(img2, (640, 480))

input = np.hstack((img1, img2))
cv2.imshow("input", input)
cv2.waitKey(0)

上图为我们需要拼接的两张图的展示,可以看出其还具有一定的旋转变换,之后的图像转换必定包含旋转的操作;

二、单应性矩阵计算

主要分为以下几个步骤:

1、创建特征转换对象;

2、通过特征转换对象获得特征点和描述子;

3、创建特征匹配器;

4、进行特征匹配;

5、过滤特征,找出有效的特征匹配点;

6、单应性矩阵计算

实现代码:

def get_homo(img1, img2):
    # 1实现
    sift = cv2.xfeatures2d.SIFT_create()
    # 2实现
    k1, p1 = sift.detectAndCompute(img1, None)
    k2, p2 = sift.detectAndCompute(img2, None)
    # 3实现
    bf = cv2.BFMatcher()
    # 4实现
    matches = bf.knnMatch(p1, p2, k=2)
    # 5实现
    good = []
    for m1, m2 in matches:
        if m1.distance <0.8 * m2.distance:
            good.append(m1)
    # 6实现
    if len(good) > 8:
        img1_pts = []
        img2_pts = []
        for m in good:
            img1_pts.append(k1[m.queryIdx].pt)
            img2_pts.append(k2[m.trainIdx].pt)
        img1_pts = np.float32(img1_pts).reshape(-1, 1, 2)
        img2_pts = np.float32(img2_pts).reshape(-1, 1, 2)
        H, mask = cv2.findHomography(img1_pts, img2_pts, cv2.RANSAC, 5.0)
        return H
    else:
        print("piints is not enough 8!")
        exit()

三、图像拼接

实现步骤:

1、获得图像的四个角点;

2、根据单应性矩阵变换图片;

3、创建一张大图,拼接图像;

4、输出结果

实现代码:

def stitch_img(img1, img2, H):
    # 1实现
    h1, w1 = img1.shape[:2]
    h2, w2 = img2.shape[:2]
    img1_point = np.float32([[0,0], [0,h1], [w1,h1], [w1,0]]).reshape(-1, 1, 2)
    img2_point = np.float32([[0,0], [0,h2], [w2,h2], [w2,0]]).reshape(-1, 1, 2)
    # 2实现
    img1_trans = cv2.perspectiveTransform(img1_point, H)
    # 将img1变换后的角点与img2原来的角点做拼接
    result_point = np.concatenate((img2_point, img1_trans), axis=0)
    # 获得拼接后图像x,y的最小值
    [x_min, y_min] = np.int32(result_point.min(axis=0).ravel()-0.5)
    # 获得拼接后图像x,y的最大值
    [x_max, y_max] = np.int32(result_point.max(axis=0).ravel()+0.5)
    # 平移距离
    trans_dist = [-x_min, -y_min]
    # 构建一个齐次平移矩阵
    trans_array = np.array([[1, 0, trans_dist[0]],
                            [0, 1, trans_dist[1]],
                            [0, 0, 1]])
    # 平移和单应性变换
    res_img = cv2.warpPerspective(img1, trans_array.dot(H), (x_max-x_min, y_max-y_min))
    # 3实现
    res_img[trans_dist[1]:trans_dist[1]+h2,
            trans_dist[0]:trans_dist[0]+w2] = img2
    return res_img

H = get_homo(img1, img2)
res_img = stitch_img(img1, img2, H)
# 4实现
cv2.imshow("result", res_img)
cv2.waitKey(0) 

最终结果图如上图所示,还有待优化点如下:

  • 边缘部分有色差,可以根据取平均值消除;
  • 黑色区域可进行裁剪并用对应颜色填充;

优化部分难度不大,有兴趣的可以实现一下;

总结

图像拼接作为一个实用性技术经常出现在我们的生活中,特别是全景拍摄以及图像内容拼接;当然,基于传统算法的图像拼接还是会有一些缺陷(速度和效果上),感兴趣的可以了解下基于深度学习的图像拼接算法,期待和大家沟通!

到此这篇关于OpenCV实战之图像拼接的示例代码的文章就介绍到这了,更多相关OpenCV图像拼接内容请搜索编程笔记以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程笔记!


推荐阅读
  • 深入解析Redis内存对象模型
    本文详细介绍了Redis内存对象模型的关键知识点,包括内存统计、内存分配、数据存储细节及优化策略。通过实际案例和专业分析,帮助读者全面理解Redis内存管理机制。 ... [详细]
  • Python处理Word文档的高效技巧
    本文详细介绍了如何使用Python处理Word文档,涵盖从基础操作到高级功能的各种技巧。我们将探讨如何生成文档、定义样式、提取表格数据以及处理超链接和图片等内容。 ... [详细]
  • 实用正则表达式有哪些
    小编给大家分享一下实用正则表达式有哪些,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下 ... [详细]
  • 在创建新的Android项目时,您可能会遇到aapt错误,提示无法打开libstdc++.so.6共享对象文件。本文将探讨该问题的原因及解决方案。 ... [详细]
  • 在本教程中,我们将深入探讨如何使用 Python 构建游戏的主程序模块。通过逐步实现各个关键组件,最终完成一个功能完善的游戏界面。 ... [详细]
  • 利用决策树预测NBA比赛胜负的Python数据挖掘实践
    本文通过使用2013-14赛季NBA赛程与结果数据集以及2013年NBA排名数据,结合《Python数据挖掘入门与实践》一书中的方法,展示如何应用决策树算法进行比赛胜负预测。我们将详细讲解数据预处理、特征工程及模型评估等关键步骤。 ... [详细]
  • 在网站制作中随时可用的10个 HTML5 代码片段
    HTML很容易写,但创建网页时,您经常需要重复做同样的任务,如创建表单。在这篇文章中,我收集了10个超有用的HTML代码片段,有HTML5启动模板、空白图片、打电话和发短信、自动完 ... [详细]
  • 本文详细介绍了C语言的起源、发展及其标准化过程,涵盖了从早期的BCPL和B语言到现代C语言的演变,并探讨了其在操作系统和跨平台编程中的重要地位。 ... [详细]
  • 云计算的优势与应用场景
    本文详细探讨了云计算为企业和个人带来的多种优势,包括成本节约、安全性提升、灵活性增强等。同时介绍了云计算的五大核心特点,并结合实际案例进行分析。 ... [详细]
  • Kubernetes 持久化存储与数据卷详解
    本文深入探讨 Kubernetes 中持久化存储的使用场景、PV/PVC/StorageClass 的基本操作及其实现原理,旨在帮助读者理解如何高效管理容器化应用的数据持久化需求。 ... [详细]
  • CentOS 6.5 上安装 MySQL 5.7.23 的详细步骤
    本文详细介绍如何在 CentOS 6.5 系统上成功安装 MySQL 5.7.23,包括卸载旧版本、下载安装包、配置文件修改及启动服务等关键步骤。 ... [详细]
  • 采用IKE方式建立IPsec安全隧道
    一、【组网和实验环境】按如上的接口ip先作配置,再作ipsec的相关配置,配置文本见文章最后本文实验采用的交换机是H3C模拟器,下载地址如 ... [详细]
  • 丽江客栈选择问题
    本文介绍了一道经典的算法题,题目涉及在丽江河边的n家特色客栈中选择住宿方案。两位游客希望住在色调相同的两家客栈,并在晚上选择一家最低消费不超过p元的咖啡店小聚。我们将详细探讨如何计算满足条件的住宿方案总数。 ... [详细]
  • 本文详细介绍了如何使用 PHP 接收并处理微信支付的回调结果,确保支付通知能够被正确接收和响应。 ... [详细]
  • 全面解析运维监控:白盒与黑盒监控及四大黄金指标
    本文深入探讨了白盒和黑盒监控的概念,以及它们在系统监控中的应用。通过详细分析基础监控和业务监控的不同采集方法,结合四个黄金指标的解读,帮助读者更好地理解和实施有效的监控策略。 ... [详细]
author-avatar
Pisces2lemon
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有