热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深入解析OpenCV中的人脸检测算法实现

本文详细探讨了OpenCV中人脸检测算法的实现原理与代码结构。通过分析核心函数和关键步骤,揭示了OpenCV如何高效地进行人脸检测。文章不仅提供了代码示例,还深入解释了算法背后的数学模型和优化技巧,为开发者提供了全面的理解和实用的参考。
原文地址:OpenCV人脸检测代码分析作者:chengscga

 

#include "cv.h"
#include "highgui.h"

#include
#include
#include
#include //用于防御式编程
#include
#include //一样是定义边界值的,定义的是浮点数的边界值
#include
#include
#include //在调用字符函数时,在源文件中包含的头文件

#ifdef _EiC
#define WIN32
#endif


static CvMemStorage *storage = 0;
static CvHaarClassifierCascade *cascade = 0;//harr 分类器级联的内部标识形式

void detect_and_draw( IplImage *image);

const char *cascade_name = "haarcascade_frontalface_alt2.xml";

int main()
{
 CvCapture *capture = 0;
 IplImage *frame, *frame_copy = 0;
 const char *input_name;
 cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0);
 if ( !cascade )
 {
  fprintf( stderr, "ERROR:没有文件n");
  return -1;
 }
 storage = cvCreateMemStorage(0);//创建内存块
 capture = cvCaptureFromCAM(0);//获取摄像头
 cvNamedWindow( "人脸识别", 1);//创建格式化窗口

 if (capture)
 {
  //循环从摄像头读出图片进行检测
  while(1)
  {
      //从摄像头或者视频文件中抓取帧 
      //函数cvQueryFrame从摄像头或者文件中抓取一帧,然后解压并返回这一帧。
      //这个函数仅仅是函数cvGrabFrame和函数cvRetrieveFrame在一起调用的组合。返回的图像不可以被用户释放或者修改。
   if (!cvGrabFrame( capture )){
         break;
   }
      frame = cvRetrieveFrame( capture ); //获得由cvGrabFrame函数抓取的图片
      if (!frame){break;}   
      if (!frame_copy){
    frame_copy = cvCreateImage(cvSize(frame->width,frame->height),IPL_DEPTH_8U,frame->nChannels);
   }
      //图像原点或者是左上角 (img->origin=IPL_ORIGIN_TL)或者是左下角(img->origin=IPL_ORIGIN_BL)
      if (frame->origin == IPL_ORIGIN_TL){
        cvCopy (frame, frame_copy, 0);
   }
      else{
     //flip_mode &#61; 0 沿X-轴翻转, flip_mode > 0 (如 1) 沿Y-轴翻转&#xff0c; flip_mode <0 (如 -1) 沿X-轴和Y-轴翻转.见下面的公式 
     //函数cvFlip 以三种方式之一翻转数组 (行和列下标是以0为基点的): 
        cvFlip (frame, frame_copy, 0);//反转图像
   }
      detect_and_draw( frame_copy ); // 检测并且标识人脸
      if(cvWaitKey (10) >&#61; 0)
      break;
  }
  
  //释放指针
  cvReleaseImage( &frame_copy );
  cvReleaseCapture( &capture);
 }
 
  cvDestroyWindow("人脸识别");
  return 0;
}


void detect_and_draw(IplImage *img) //检测和画出人脸的函数体
{
 //随机颜色
   static CvScalar colors[] &#61;
   {
  {{0,0,255}},
  {{0,128,255}},
  {{0,255,255}},
  {{0,255,0}},
  {{255,128,0}},
  {{255,255,0}},
  {{255,0,0}},
  {{255,0,255}}
   };
 
   double scale &#61; 1.3;
   IplImage *gray &#61; cvCreateImage(cvSize(img->width,img->height), 8, 1);//灰度图像
   IplImage *small_img &#61; cvCreateImage(cvSize(cvRound(img->width/scale),cvRound(img->height/scale)),8, 1);
   int i;
   cvCvtColor(img, gray, CV_BGR2GRAY);//把输入的彩色图像转化为灰度图像
   cvResize(gray, small_img,CV_INTER_LINEAR);//缩小灰色图片
   cvEqualizeHist(small_img, small_img);//灰度图象直方图均衡化
   cvClearMemStorage(storage);//释放内存块

   if (cascade)
   {
   double t &#61; (double)cvGetTickCount();//精确测量函数的执行时间
   //从目标图像small_img中检测出人脸
   CvSeq *faces &#61; cvHaarDetectObjects(small_img, cascade,storage,1.1,2,0,cvSize(30, 30));
   t &#61; (double)cvGetTickCount() - t; //计算检测到人脸所需时间
   printf("检测所用时间 &#61; %gmsn",t/((double)cvGetTickFrequency()*1000.));//打印到屏幕

   //画出检测到的人脸外框(可检测到多个人脸)
   for (i &#61; 0; i <(faces ? faces->total : 0); i&#43;&#43;)
   {
     //返回索引所指定的元素指针
     CvRect *r &#61; (CvRect*)cvGetSeqElem(faces, i); 
     //用矩形
     //确定两个点来确定人脸位置因为用cvRetangle
     CvPoint pt1, pt2;
     //找到画矩形的两个点
     pt1.x &#61; r->x*scale;
     pt2.x &#61; (r->x&#43;r->width)*scale;
     pt1.y &#61; r->y*scale;
     pt2.y &#61; (r->y&#43;r->height)*scale;
     //画出矩形
     cvRectangle( img, pt1, pt2, colors[i%8], 3, 8, 0 );
   }

   }
  cvShowImage("人脸识别",img);
  cvReleaseImage(&gray);
  cvReleaseImage(&small_img);
}

 

转载&#xff1a; http://whuthj.javaeye.com/blog/668948



推荐阅读
  • 本次发布的Qt音乐播放器2.0版本在用户界面方面进行了细致优化,提升了整体的视觉效果和用户体验。尽管核心功能与1.0版本保持一致,但界面的改进使得操作更加直观便捷,为用户带来了更为流畅的使用体验。此外,我们还对部分细节进行了微调,以确保软件的稳定性和性能得到进一步提升。 ... [详细]
  • 【OpenCV4实战】掌握OpenCV中的键盘和鼠标事件处理技巧
    在《OpenCV4实战》中,本文详细介绍了如何在OpenCV中处理键盘和鼠标事件。首先,针对键盘事件,文章涵盖了基本原理、如何确定按键响应值以及通过按键调节图像亮度的具体方法。接着,对于鼠标事件,文章不仅讲解了基础理论,还提供了示例程序,帮助读者更好地理解和应用这些技术。通过这些内容,读者可以全面掌握OpenCV中键盘和鼠标事件的处理技巧。 ... [详细]
  • 技术日志:深入探讨Spark Streaming与Spark SQL的融合应用
    技术日志:深入探讨Spark Streaming与Spark SQL的融合应用 ... [详细]
  • 在Android平台上利用FFmpeg的Swscale组件实现YUV与RGB格式互转
    本文探讨了在Android平台上利用FFmpeg的Swscale组件实现YUV与RGB格式互转的技术细节。通过详细分析Swscale的工作原理和实际应用,展示了如何在Android环境中高效地进行图像格式转换。此外,还介绍了FFmpeg的全平台编译过程,包括x264和fdk-aac的集成,并在Ubuntu系统中配置Nginx和Nginx-RTMP-Module以支持直播推流服务。这些技术的结合为音视频处理提供了强大的支持。 ... [详细]
  • HTML5 Web存储技术是许多开发者青睐本地应用程序的重要原因之一,因为它能够实现在客户端本地存储数据。HTML5通过引入Web Storage API,使得Web应用程序能够在浏览器中高效地存储数据,从而提升了应用的性能和用户体验。相较于传统的Cookie机制,Web Storage不仅提供了更大的存储容量,还简化了数据管理和访问的方式。本文将从基础概念、关键技术到实际应用,全面解析HTML5 Web存储技术,帮助读者深入了解其工作原理和应用场景。 ... [详细]
  • 深入解析Android中图像资源的内存占用问题及其优化策略
    在Android开发过程中,图像资源的内存占用是一个值得关注的问题。本文将探讨图像内存占用与哪些因素相关,包括设备性能的影响,并提供一系列优化策略,帮助开发者有效管理图像资源,提升应用性能。 ... [详细]
  • 深入解析JavaScript中的函数防抖与节流技术及其应用场景
    本文深入探讨了JavaScript中函数防抖和节流技术的原理及应用场景。通过详细的示例代码,全面解析了这两种优化方法在实际开发中的重要作用,为开发者提供了宝贵的参考和实践指导。 ... [详细]
  • GDB 使用心得与技巧总结
    在使用 GDB 进行调试时,可以采用以下技巧提升效率:1. 通过设置 `set print pretty on` 来美化打印输出,使数据结构更加易读;2. 掌握常见数据结构的打印方法,如链表、树等;3. 利用 `info locals` 命令查看当前作用域内的所有局部变量;4. 在需要进行类型强制转换时,正确使用语法,例如 `p (Test::A *) pObj`。这些技巧能够显著提高调试的便捷性和准确性。 ... [详细]
  • 本文介绍了Android动画的基本概念及其主要类型。Android动画主要包括三种形式:视图动画(也称为补间动画或Tween动画),主要通过改变视图的属性来实现动态效果;帧动画,通过顺序播放一系列预定义的图像来模拟动画效果;以及属性动画,通过对对象的属性进行平滑过渡来创建更加复杂的动画效果。每种类型的动画都有其独特的应用场景和实现方式,开发者可以根据具体需求选择合适的动画类型。 ... [详细]
  • BZOJ4240 Gym 102082G:贪心算法与树状数组的综合应用
    BZOJ4240 Gym 102082G 题目 "有趣的家庭菜园" 结合了贪心算法和树状数组的应用,旨在解决在有限时间和内存限制下高效处理复杂数据结构的问题。通过巧妙地运用贪心策略和树状数组,该题目能够在 10 秒的时间限制和 256MB 的内存限制内,有效处理大量输入数据,实现高性能的解决方案。提交次数为 756 次,成功解决次数为 349 次,体现了该题目的挑战性和实际应用价值。 ... [详细]
  • 结语 | 《探索二进制世界:软件安全与逆向分析》读书笔记:深入理解二进制代码的逆向工程方法
    结语 | 《探索二进制世界:软件安全与逆向分析》读书笔记:深入理解二进制代码的逆向工程方法 ... [详细]
  • 本文深入探讨了 MXOTDLL.dll 在 C# 环境中的应用与优化策略。针对近期公司从某生物技术供应商采购的指纹识别设备,该设备提供的 DLL 文件是用 C 语言编写的。为了更好地集成到现有的 C# 系统中,我们对原生的 C 语言 DLL 进行了封装,并利用 C# 的互操作性功能实现了高效调用。此外,文章还详细分析了在实际应用中可能遇到的性能瓶颈,并提出了一系列优化措施,以确保系统的稳定性和高效运行。 ... [详细]
  • 本文介绍了一种基于最大匹配算法的简易分词程序的设计与实现。该程序通过引入哈希集合存储词典,利用前向最大匹配方法对输入文本进行高效分词处理,具有较高的准确率和较快的处理速度,适用于中文文本的快速分词需求。 ... [详细]
  • 进程(Process)是指计算机中程序对特定数据集的一次运行活动,是系统资源分配与调度的核心单元,构成了操作系统架构的基础。在早期以进程为中心的计算机体系结构中,进程被视为程序的执行实例,其状态和控制信息通过任务描述符(task_struct)进行管理和维护。本文将深入探讨进程的概念及其关键数据结构task_struct,解析其在操作系统中的作用和实现机制。 ... [详细]
  • 在上一节中,我们完成了网络的前向传播实现。本节将重点探讨如何为检测输出设定目标置信度阈值,并应用非极大值抑制技术以提高检测精度。为了更好地理解和实践这些内容,建议读者已经完成本系列教程的前三部分,并具备一定的PyTorch基础知识。此外,我们将详细介绍这些技术的原理及其在实际应用中的重要性,帮助读者深入理解目标检测算法的核心机制。 ... [详细]
author-avatar
mobiledu2502876467
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有