热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

牛客国庆集训派对Day3I.Metropolis(Dijkstra变型)

题意:求一个N个点无向图中,其中p个关键点间的最短距离.分析:比较特殊的最短路,方式类似于多源BFS,将所有关键点装入优先队列,状态中需要包含其源点的id.对每条边都要遍历,对每个

题意:求一个N个点无向图中,其中p个关键点间的最短距离.
分析:比较特殊的最短路,方式类似于多源BFS,将所有关键点装入优先队列,状态中需要包含其源点的id.对每条边都要遍历,对每个节点,需要记录其确定最短的源头以及其最短距离.当一个访问状态到达了与自己源头状态不同的点,则说明两个关键点相遇,每次相遇时,更新两个源头的最短距离.

#include
using namespace std;
typedef long long LL;
const int MAXN = 2e5+5;
const LL INF &#61; (1LL)<<60;
struct Edge{int v,next;LL w;
}E[MAXN<<2];
int head[MAXN],tot;
int vis[MAXN];
LL d[MAXN],link[MAXN];
vector st;
int N,M,k;void init()
{st.clear();memset(head,-1,sizeof(head));tot &#61; 0;
}void AddEdge(int u,int v,int w){E[tot] &#61; (Edge){v,head[u],w};head[u] &#61; tot&#43;&#43;;
}struct HeapNode{int u,sta;LL val;bool operator <(const HeapNode & rhs) const{return val > rhs.val;}
};
void Dijkstra()
{for(int i&#61;0;i<&#61;N;&#43;&#43;i) d[i] &#61; INF, vis[i] &#61; 0;priority_queue Q;for(int i&#61;0,sz &#61; st.size();i}int main()
{#ifndef ONLINE_JUDGEfreopen("in.txt","r",stdin);freopen("out.txt","w",stdout);#endifscanf("%d %d %d",&N, &M, &k);init();int u,v;LL w;while(k--){scanf("%d",&u);st.push_back(u);}while(M--){scanf("%d %d %lld",&u,&v,&w);AddEdge(u,v,w);AddEdge(v,u,w);}Dijkstra();for(int i&#61;0,sz &#61; st.size();i}

转:https://www.cnblogs.com/xiuwenli/p/9741575.html



推荐阅读
  • Splay Tree 区间操作优化
    本文详细介绍了使用Splay Tree进行区间操作的实现方法,包括插入、删除、修改、翻转和求和等操作。通过这些操作,可以高效地处理动态序列问题,并且代码实现具有一定的挑战性,有助于编程能力的提升。 ... [详细]
  • 本次考试于2016年10月25日上午7:50至11:15举行,主要涉及数学专题,特别是斐波那契数列的性质及其在编程中的应用。本文将详细解析考试中的题目,并提供解题思路和代码实现。 ... [详细]
  • UNP 第9章:主机名与地址转换
    本章探讨了用于在主机名和数值地址之间进行转换的函数,如gethostbyname和gethostbyaddr。此外,还介绍了getservbyname和getservbyport函数,用于在服务器名和端口号之间进行转换。 ... [详细]
  • 本文探讨了如何在模运算下高效计算组合数C(n, m),并详细介绍了乘法逆元的应用。通过扩展欧几里得算法求解乘法逆元,从而实现除法取余的计算。 ... [详细]
  • Linux设备驱动程序:异步时间操作与调度机制
    本文介绍了Linux内核中的几种异步延迟操作方法,包括内核定时器、tasklet机制和工作队列。这些机制允许在未来的某个时间点执行任务,而无需阻塞当前线程,从而提高系统的响应性和效率。 ... [详细]
  • MySQL索引详解与优化
    本文深入探讨了MySQL中的索引机制,包括索引的基本概念、优势与劣势、分类及其实现原理,并详细介绍了索引的使用场景和优化技巧。通过具体示例,帮助读者更好地理解和应用索引以提升数据库性能。 ... [详细]
  • 并发编程 12—— 任务取消与关闭 之 shutdownNow 的局限性
    Java并发编程实践目录并发编程01——ThreadLocal并发编程02——ConcurrentHashMap并发编程03——阻塞队列和生产者-消费者模式并发编程04——闭锁Co ... [详细]
  • 扫描线三巨头 hdu1928hdu 1255  hdu 1542 [POJ 1151]
    学习链接:http:blog.csdn.netlwt36articledetails48908031学习扫描线主要学习的是一种扫描的思想,后期可以求解很 ... [详细]
  • 题目Link题目学习link1题目学习link2题目学习link3%%%受益匪浅!-----&# ... [详细]
  • 本题涉及一棵由N个节点组成的树(共有N-1条边),初始时所有节点均为白色。题目要求处理两种操作:一是改变某个节点的颜色(从白变黑或从黑变白);二是查询从根节点到指定节点路径上的第一个黑色节点,若无则输出-1。 ... [详细]
  • 本文介绍如何使用JPA Criteria API创建带有多个可选参数的动态查询方法。当某些参数为空时,这些参数不会影响最终查询结果。 ... [详细]
  • 深入探讨CPU虚拟化与KVM内存管理
    本文详细介绍了现代服务器架构中的CPU虚拟化技术,包括SMP、NUMA和MPP三种多处理器结构,并深入探讨了KVM的内存虚拟化机制。通过对比不同架构的特点和应用场景,帮助读者理解如何选择最适合的架构以优化性能。 ... [详细]
  • 本题通过将每个矩形视为一个节点,根据其相对位置构建拓扑图,并利用深度优先搜索(DFS)或状态压缩动态规划(DP)求解最小涂色次数。本文详细解析了该问题的建模思路与算法实现。 ... [详细]
  • 本题探讨如何通过最大流算法解决农场排水系统的设计问题。题目要求计算从水源点到汇合点的最大水流速率,使用经典的EK(Edmonds-Karp)和Dinic算法进行求解。 ... [详细]
  • 本文探讨了在通过 API 端点调用时,使用猫鼬(Mongoose)的 findOne 方法总是返回 null 的问题,并提供了详细的解决方案和建议。 ... [详细]
author-avatar
mobiledu2502915673
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有