热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

内存泄漏之malloc_trim

现象1.压力测试过程中,发现被测对象性能不够理想,具体表现为:     进程的系统态CPU消耗20,用户态CPU消耗10,系统idle大约702.用ps-omajflt,minfl

现象
1.压力测试过程中,发现被测对象性能不够理想,具体表现为:
         进程的系统态CPU消耗20,用户态CPU消耗10,系统idle大约70
2.用ps -o majflt,minflt -C program命令查看(pidstat也可以)
        发现majflt每秒增量为0,而minflt每秒增量大于10000

 

知识补充

majflt,minflt介绍
majflt代表major fault,中文名叫大错误,minflt代表minor fault,中文名叫小错误。这两个数值表示一个进程自启动以来所发生的缺页中断的次数。
当一个进程发生缺页中断的时候,进程会陷入内核态,执行以下操作:
        a 检查要访问的虚拟地址是否合法
        b 查找/分配一个物理页
        c 填充物理页内容(读取磁盘,或者直接置0,或者啥也不干)
       d 建立映射关系(虚拟地址到物理地址)
       e 重新执行发生缺页中断的那条指令
       如果第3步,需要读取磁盘,那么这次缺页中断就是majflt,否则就是minflt。此进程minflt如此之高,一秒10000多次,不得不怀疑它跟进程内核态cpu消耗大有很大关系。

 

内存分配的原理

从操作系统角度来看,进程分配内存有两种方式,分别由两个系统调用完成:brkmmap(不考虑共享内存)。
brk是将静态区的最高地址指针_edata 往高地址推,mmap是在进程的虚拟地址空间中(一般是堆和栈中间)找一块空闲的。
这两种方式分配的都是虚拟内存,没有分配物理内存。
在第一次访问已分配的虚拟地址空间的时候,发生缺页中断,操作系统负责分配物理内存,然后建立虚拟内存和物理内存之间的映射关系。
在标准C库中,提供了malloc/free函数分配释放内存,这两个函数底层是由brk,mmap,munmap这些系统调用实现的。

下面以一个例子来说明内存分配的原理:

1.进程启动的时候,其(虚拟)内存空间的初始布局如图所示。其中,mmap内存映射文件是在堆和栈的中间(例如libc-2.2.93.so,其它数据文件等),为了简单起见,省略了内存映射文件。_edata指针(glibc里面定义)指向静态区的最高地址。

 

2.进程调用A=malloc(30K)以后,内存空间下图:malloc函数会调用brk系统调用,将_edata指针往高地址推30K,就完成虚拟内存分配。你可能会问:只要把_edata+30K就完成内存分配了?事实是这样的,_edata+30K只是完成虚拟地址的分配,A这块内存现在还是没有物理页与之对应的,等到进程第一次读写A这块内存的时候,发生缺页中断,这个时候,内核才分配A这块内存对应的物理页。

 

3.进程调用B=malloc(40K)以后,内存空间如图  

 

4. 进程调用C=malloc(200K)以后,内存空间如图:默认情况下,malloc函数分配内存,如果请求内存大于128K(可由M_MMAP_THRESHOLD选项调节),那就不是去推_edata指针了,而是利用mmap系统调用,从堆和栈的中间分配一块虚拟内存。这样子做主要是因为brk分配的内存需要等到高地址内存释放以后才能释放(例如,在B释放之前,A是不可能释放的),而mmap分配的内存可以单独释放。当然,还有其它的好处,也有坏处,再具体下去,有兴趣的同学可以去看glibc里面malloc的代码了。 

 

 

5.进程调用D=malloc(100K)以后,内存空间如图

 

6.进程调用free(C)以后,C对应的虚拟内存和物理内存一起释放

 

7.进程调用free(B)以后。B对应的虚拟内存和物理内存都没有释放,因为只有一个_edata指针,如果往回推,那么D这块内存怎么办呢?当然,B这块内存,是可以重用的,如果这个时候再来一个40K的请求,那么malloc很可能就把B这块内存返回回去了。

 

8.进程调用free(D)以后,如图所示。B和D连接起来,变成一块140K的空闲内存。  

 

9.默认情况下:当最高地址空间的空闲内存超过128K(可由M_TRIM_THRESHOLD选项调节)时,执行内存紧缩操作(trim)。在上一个步骤free的时候,发现最高地址空闲内存超过128K,于是内存紧缩,变成如图所示。

 

代码验证
test1: 循环new分配64K * 2048的内存空间,写入脏数据后,循环调用delete释放。top看进程依然使用131M内存,没有释放。--此时用brk
test2: 循环new分配128K * 2048的内存空间,写入脏数据后,循环调用delete释放。top看进程使用,2960字节内存,完全释放。--此时用mmap
test3: 设置M_MMAP_THRESHOLD 256k,循环new分配128k * 2048 的内存空间,写入脏数据后,循环调用delete释放,而后调用malloc_trim(0)。top看进程使用,2348字节,完全释放。 ---此时用brk

 

测试代码分析
查看代码,发现是这么写的:一个请求来,用malloc分配2M内存,请求结束后free这块内存。看日志,发现分配内存语句耗时10us,平均一条请求处理耗时1000us 。 原因已找到! 虽然分配内存语句的耗时在一条处理请求中耗时比重不大,但是这条语句严重影响了性能。
通过内存分配的原理,那么被测模块在内核态cpu消耗高的原因就很清楚了:每次请求来都malloc一块2M(大于128k)的内存,默认情况下,malloc调用mmap分配内存,请求结束的时候,调用munmap释放内存。假设每个请求需要6个物理页,那么每个请求就会产生6个缺页中断,在2000的压力下,每秒就产生了10000多次缺页中断,这些缺页中断不需要读取磁盘解决,所以叫做minflt;缺页中断在内核态执行,因此进程的内核态cpu消耗很大。缺页中断分散在整个请求的处理过程中,所以表现为分配语句耗时(10us)相对于整条请求的处理时间(1000us)比重很小。

 

解决方案
将动态内存改为静态分配,或者启动的时候,用malloc为每个线程分配,然后保存在threaddata里面。但是,由于这个模块的特殊性,静态分配,或者启动时候分配都不可行。另外,Linux下默认栈的大小限制是10M,如果在栈上分配几M的内存,有风险。
禁止malloc调用mmap分配内存,禁止内存紧缩。
在进程启动时候,加入以下两行代码:

mallopt(M_MMAP_MAX, 0); // 禁止malloc调用mmap分配内存
mallopt(M_TRIM_THRESHOLD, -1); // 禁止内存紧缩

效果: 加入这两行代码以后,用ps命令观察,压力稳定以后,majlt和minflt都为0。进程的系统态cpu从20降到10。

小结: 如果一个进程使用了mmap将很大的数据文件映射到进程的虚拟地址空间,我们需要重点关注majflt的值,因为相比minflt,majflt对于性能的损害是致命的,随机读一次磁盘的耗时数量级在几个毫秒,而minflt只有在大量的时候才会对性能产生影响。

 



推荐阅读
  • 在Android应用开发过程中,开发者经常遇到诸如CPU使用率过高、内存泄漏等问题。本文将介绍几种常用的命令及其应用场景,帮助开发者有效定位并解决问题。 ... [详细]
  • 本文档提供了首次周测的答案解析,涵盖特殊符号、命令作用、路径说明以及实战练习等内容。 ... [详细]
  • 为何Compose与Swarm之后仍有Kubernetes的诞生?
    探讨在已有Compose和Swarm的情况下,Kubernetes是如何以其独特的设计理念和技术优势脱颖而出,成为容器编排领域的领航者。 ... [详细]
  • APP及其接口测试全面解析
    本文深入探讨了移动应用(APP)及其接口测试的关键点,包括安装与卸载、功能一致性、系统兼容性、权限管理等多个方面的测试策略,以及针对接口的功能、边界值、参数组合等专业测试方法。同时,介绍了几款常用的测试工具,帮助开发者提高测试效率和质量。 ... [详细]
  • 雨林木风 GHOST XP SP3 经典珍藏版 YN2014.04
    雨林木风 GHOST XP SP3 经典珍藏版 YN2014.04 ... [详细]
  • 本文探讨了使用Python实现监控信息收集的方法,涵盖从基础的日志记录到复杂的系统运维解决方案,旨在帮助开发者和运维人员提升工作效率。 ... [详细]
  • Docker安全策略与管理
    本文探讨了Docker的安全挑战、核心安全特性及其管理策略,旨在帮助读者深入理解Docker安全机制,并提供实用的安全管理建议。 ... [详细]
  • CentOS下ProFTPD的安装与配置指南
    本文详细介绍在CentOS操作系统上安装和配置ProFTPD服务的方法,包括基本配置、安全设置及高级功能的启用。 ... [详细]
  • 探讨Linux系统中PCI设备的I/O地址与内存映射的区别及其实现方式。 ... [详细]
  • 本文详细解析 Skynet 的启动流程,包括配置文件的读取、环境变量的设置、主要线程的启动(如 timer、socket、monitor 和 worker 线程),以及消息队列的实现机制。 ... [详细]
  • Node.js模块化的优势及实践
    本文探讨Node.js模块化的重要性和具体实现方式,包括其带来的代码复用性增强、可维护性提升、以及如何有效避免命名冲突等问题。 ... [详细]
  • 利用Git GUI将本地项目同步至GitHub的方法
    GitHub作为开发者不可或缺的工具,不仅提供了丰富的开源项目资源,还极大地便利了个人项目的管理和版本控制。本文将详细介绍如何使用Git GUI工具将本地开发的项目上传至GitHub。 ... [详细]
  • 本文深入探讨了MySQL中的高级特性,包括索引机制、锁的使用及管理、以及如何利用慢查询日志优化性能。适合有一定MySQL基础的读者进一步提升技能。 ... [详细]
  • 本文深入探讨了Linux内核中进程地址空间的设计与实现,包括虚拟地址空间的概念、内存描述符`mm_struct`的作用、内核线程与用户进程的区别、进程地址空间的分配方法、虚拟内存区域(VMA)的结构以及地址空间与页表之间的映射机制。 ... [详细]
  • 探索Java 11中的ZGC垃圾收集器
    Java 11引入了一种新的垃圾收集器——ZGC,由Oracle公司研发,旨在支持TB级别的内存容量,并保证极低的暂停时间。本文将探讨ZGC的开发背景、技术特点及其潜在的应用前景。 ... [详细]
author-avatar
rge4688618
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有