热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Hadoop中NameNode与SecondaryNameNode的运行机制解析

在Hadoop架构中,NameNode中的元数据存储位置是一个关键问题。通常,元数据会存储在内存中以提高访问效率,因为频繁的磁盘随机访问会导致性能下降。此外,NameNode还会定期将元数据的快照保存到磁盘上,以确保数据的持久性和恢复能力。SecondaryNameNode则负责定期合并这些快照和编辑日志,进一步增强系统的稳定性和可靠性。

  思考:nameNode中元数据的是存在哪里的呢?

  有两个可能,一个是存在磁盘中,另一个可能是存在内存中。如果存在磁盘中的话,效率比较低  ,因为需要经常的随机访问还要给出对应的响应到客户。如果吃存到内存中,一旦断点元数据就会丢失,集群则无法正常的工作。因此我们可以把两者结合,在磁盘中备份元数据  FSImage.

  新问题来了。如果内存中数据更新的时候同时在磁盘中备份数据,会导致效率降低,如果不更新就导致数据一致性。一旦NameNode断点会导致数据丢失。

  HDFS有一个特性是修改比较慢的特征,此时产生一个新的文件  Edits文件,只追加信息。当元数据有变动的时候,修改内存中元数据并追加到Edits中。如果NameNode节点断电会合并FSImage和Edits文件,如果数据过大断电的时候合并依然由NameNode进行,就会浪费时间,所以会定期的对两个文件进行合并,且这个操作交由SecondaryNameNode来操作。

 

 

 

 

 

 

 第一 阶段:NameNode 启动
    (1)第一次启动 NameNode 格式化后,创建 Fsimage 和 Edits 文件。如果不是第一次启
         动,直接加载编辑日志和镜像文件到内存。
    (2)客户端对元数据进行增删改的请求。
    (3)NameNode 记录操作日志,更新滚动日志。
    (4)NameNode 在内存中对元数据进行增删改

第二 阶段:Secondary NameNode 工作
    (1)Secondary NameNode 询问 NameNode 是否需要 CheckPoint。直接带回 NameNode
        是否检查结果。
    (2)Secondary NameNode 请求执行 CheckPoint。
    (3)NameNode 滚动正在写的 Edits 日志。
    (4)将滚动前的编辑日志和镜像文件拷贝到 Secondary NameNode。
    (5)Secondary NameNode 加载编辑日志和镜像文件到内存,并合并。
    (6)生成新的镜像文件 fsimage.chkpoint。
    (7)拷贝 fsimage.chkpoint 到 NameNode。
    (8)NameNode 将 fsimage.chkpoint 重新命名成 fsimage

 



推荐阅读
  • 本文介绍了如何使用Flume从Linux文件系统收集日志并存储到HDFS,然后通过MapReduce清洗数据,使用Hive进行数据分析,并最终通过Sqoop将结果导出到MySQL数据库。 ... [详细]
  • HBase在金融大数据迁移中的应用与挑战
    随着最后一台设备的下线,标志着超过10PB的HBase数据迁移项目顺利完成。目前,新的集群已在新机房稳定运行超过两个月,监控数据显示,新集群的查询响应时间显著降低,系统稳定性大幅提升。此外,数据消费的波动也变得更加平滑,整体性能得到了显著优化。 ... [详细]
  • 技术日志:深入探讨Spark Streaming与Spark SQL的融合应用
    技术日志:深入探讨Spark Streaming与Spark SQL的融合应用 ... [详细]
  • 本文介绍如何通过整合SparkSQL与Hive来构建高效的用户画像环境,提高数据处理速度和查询效率。 ... [详细]
  • 大数据领域的职业路径与角色解析
    本文将深入探讨大数据领域的各种职业和工作角色,帮助读者全面了解大数据行业的需求、市场趋势,以及从入门到高级专业人士的职业发展路径。文章还将详细介绍不同公司对大数据人才的需求,并解析各岗位的具体职责、所需技能和经验。 ... [详细]
  • Hadoop的文件操作位于包org.apache.hadoop.fs里面,能够进行新建、删除、修改等操作。比较重要的几个类:(1)Configurati ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • Hadoop平台警告解决:无法加载本机Hadoop库的全面应对方案
    本文探讨了在Hadoop平台上遇到“无法加载本机Hadoop库”警告的多种解决方案。首先,通过修改日志配置文件来忽略该警告,这一方法被证明是有效的。其次,尝试指定本地库的路径,但未能解决问题。接着,尝试不使用Hadoop本地库,同样没有效果。然后,通过替换现有的Hadoop本地库,成功解决了问题。最后,根据Hadoop的源代码自行编译本地库,也达到了预期的效果。以上方法适用于macOS系统。 ... [详细]
  • 本文探讨了 Kafka 集群的高效部署与优化策略。首先介绍了 Kafka 的下载与安装步骤,包括从官方网站获取最新版本的压缩包并进行解压。随后详细讨论了集群配置的最佳实践,涵盖节点选择、网络优化和性能调优等方面,旨在提升系统的稳定性和处理能力。此外,还提供了常见的故障排查方法和监控方案,帮助运维人员更好地管理和维护 Kafka 集群。 ... [详细]
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
  • 在搭建Hadoop集群以处理大规模数据存储和频繁读取需求的过程中,经常会遇到各种配置难题。本文总结了作者在实际部署中遇到的典型问题,并提供了详细的解决方案,帮助读者避免常见的配置陷阱。通过这些经验分享,希望读者能够更加顺利地完成Hadoop集群的搭建和配置。 ... [详细]
  • Hadoop 2.6 主要由 HDFS 和 YARN 两大部分组成,其中 YARN 包含了运行在 ResourceManager 的 JVM 中的组件以及在 NodeManager 中运行的部分。本文深入探讨了 Hadoop 2.6 日志文件的解析方法,并详细介绍了 MapReduce 日志管理的最佳实践,旨在帮助用户更好地理解和优化日志处理流程,提高系统运维效率。 ... [详细]
  • 构建高可用性Spark分布式集群:大数据环境下的最佳实践
    在构建高可用性的Spark分布式集群过程中,确保所有节点之间的无密码登录是至关重要的一步。通过在每个节点上生成SSH密钥对(使用 `ssh-keygen -t rsa` 命令并保持默认设置),可以实现这一目标。此外,还需将生成的公钥分发到所有节点的 `~/.ssh/authorized_keys` 文件中,以确保节点间的无缝通信。为了进一步提升集群的稳定性和性能,建议采用负载均衡和故障恢复机制,并定期进行系统监控和维护。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • Zookeeper作为Apache Hadoop生态系统中的一个重要组件,主要致力于解决分布式应用中的常见数据管理难题。它提供了统一的命名服务、状态同步服务以及集群管理功能,有效提升了分布式系统的可靠性和可维护性。此外,Zookeeper还支持配置管理和临时节点管理,进一步增强了其在复杂分布式环境中的应用价值。 ... [详细]
author-avatar
杰仔
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有