热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

N个鸡蛋放进M个篮子问题

题目:有N个鸡蛋和M个篮子,把鸡蛋放到M个篮子里,每个篮子都不能为空。另外,需要满足:任意一个小于N的正整数,都能由某几个篮子内蛋的数量相加的和得到。写出程序,使得输入一个(N,M),输出所有可能的分

题目:
有N个鸡蛋和M个篮子,把鸡蛋放到M个篮子里,每个篮子都不能为空。另外,需要满足:任意一个小于N的正整数,都能由某几个篮子内蛋的数量相加的和得到。写出程序,使得输入一个(N,M),输出所有可能的分配情况。

 

从题意中应该可以得出,对于(1,1,2,2)和(1,2,1,2)这两种组合,应该是一样的。
因而对于这M个篮子中的鸡蛋数量,我们用数组basket[M]来表示,我们按照非递减顺序进行排列,即basket[i] <= basket[i+1]

1.我们利用归纳法来总结出一个规律:
   对于前n个篮子,其鸡蛋数量总和为Sn,那么对于第n+1个篮子,其鸡蛋数量应该满足:
   basket[n+1] <= Sn + 1,如果basket[n+1] > Sn + 1,那么Sn + 1这个数将无法通过相应的篮子鸡蛋数相加来获得。
   由于是非递减序列,因而
   basket[n] <= basket[n+1] <= Sn + 1

 

2.我们来证明符合上式的数组能够满足条件“任意一个小于N的正整数,都能由某几个篮子内蛋的数量相加的和得到”。
   当M = 1时,basket[0] = 1,当M=2时,取basket[1] = 1,能够满足上述条件。
                                                         取basket[1] = 2,也能够满足上述条件。
   假设M = n-1时,满足上述条件,我们来证明当M = n时亦满足。
   前n-1个篮子的鸡蛋数量总和为Sn-1,此时加上第n个篮子,总和为Sn = Sn-1 + basket[n-1]。即证明Sn - 1,Sn - 2,Sn - 3,Sn - (basket[n-1] - 1)都可以由某几个篮子内蛋的数量相加的和得到。由于basket[n-1] <= Sn-1,而且小于或者等于Sn-1的数能由某几个篮子内蛋的数量相加的和得到,所以Sn - 1,Sn - 2,Sn - 3,Sn - (basket[n-1] - 1)亦可得到。
   证毕。

3.对于N和M的值,我们在输入后即可做一个判断。
   2.1  当N    2.2  当N >= M时,第一个篮子必然要放1个鸡蛋,其后面的篮子我们按照basket[n] <= basket[n+1] <= Sn + 1取最大值,依次为2,4,8,16......,鸡蛋总数为2^M - 1,即M个篮子的鸡蛋数量最大值。

   所以M <= N <2^M

 

4.代码要点

   4.1 对于函数

void solve(int current_sum, int basket_id, int current_num, int* basket, int N, int M)

   其中current_sum表示当前所有篮子鸡蛋的总和,

         basket_id表示当前篮子的序号,
         current_num表示将要放到当前篮子去的鸡蛋数量,
         basket, N, M值都是main函数中的原值,在递归中这三个参数基本没变。
   初始化为(0, 0, 1, basket, N, M)表示此时所有鸡蛋数量为0,将要把1个鸡蛋放进第0个篮子里面。

   4.2 对于函数solve中的

    if ((current_sum + current_num*(M - basket_id)) > N || (current_sum + (current_sum + 1)*((1<<(M - basket_id)) - 1)) < N)
return;

         我们采用的是搜索中的剪枝技术,即在每次递归时,通过预先判断来看此路是否走得通。

  (current_sum + current_num*(M - basket_id)) > N 表示之后的所有篮子都添加最小鸡蛋数量,如果这都大于N,那么肯定不符。
  (current_sum + (current_sum + 1)*((1<<(M - basket_id)) - 1))  

        其中(current_sum + 1)*((1<<(M - basket_id)) - 1) 可以这样解释:

        假设前面的篮子总和为n,那么紧挨着的后一个篮子里鸡蛋数量最大值为n+1,其后的一个篮子最大值为n + (n + 1) + 1 = 2n + 2,这之后的一个篮子的最大值为n + (n + 1) + (2n + 2) + 1 = 4n + 4......(即这里取的都是S+ 1)
        依次类推,我们发现n + 1 + (2n + 2) + (4n + 4) + ...... = (2^count - 1)*(n + 1),count表示相应的篮子数量。

 

5.代码如下:

N eggs M baskets
 1 #include 
2 #include
3
4 void solve(int current_sum, int basket_id, int current_num, int* basket, int N, int M)
5 {
6 if (current_sum == N && basket_id == M)
7 {
8 int i;
9 for (i = 0; i )
10 printf("%d\t", basket[i]);
11 printf("\n");
12 return;
13 }
14
15 if (current_num > N || basket_id >= M)
16 return;
17
18 if ((current_sum + current_num*(M - basket_id)) > N ||
19 (current_sum + (current_sum + 1)*((1<<(M - basket_id)) - 1)) < N)
20 return;
21
22 int j;
23 for (j = current_num; j <= current_sum + 1; j++)
24 {
25 basket[basket_id] = j;
26 solve(current_sum + j, basket_id + 1, j, basket, N, M);
27 }
28 }
29
30 int main()
31 {
32 int N;//the number of eggs
33 int M;//the number of baskets
34 while (scanf("%d%d", &N, &M) != EOF)
35 {
36 if (N = 1<0)
37 printf("Wrong data!\n");
38 else
39 printf("The combinations are as below:\n");
40
41 int* basket = (int*)malloc(sizeof(int)*M);
42 solve(0, 0, 1, basket, N, M);
43 free(basket);
44 }
45 return 0;
46 }

 

 1 #include 
2
3 void solve(int current_sum, int basket_id, int current_num, int* basket, int N, int M)
4 {
5 if (current_sum == N && basket_id == M)
6 {
7 int i;
8 for (i = 0; i )
9 printf("%d\t", basket[i]);
10 printf("\n");
11 return;
12 }
13
14 if (current_num > N || basket_id >= M)
15 return;
16
17 if ((current_sum + current_num*(M - basket_id)) > N ||
18 (current_sum + (current_sum + 1)*((1<<(M - basket_id)) - 1)) < N)
19 return;
20
21 int j;
22 for (j = current_num; j <= current_sum + 1; j++)
23 {
24 basket[basket_id] = j;
25 solve(current_sum + j, basket_id + 1, j, basket, N, M);
26 }
27 }
28
29 int main()
30 {
31 int N;//the number of eggs
32 int M;//the number of baskets
33 while (scanf("%d%d", &N, &M) != EOF)
34 {
35 if (N = 1<0)
36 printf("Wrong data!\n");
37 else
38 printf("The combinations are as below:\n");
39
40 int* basket = new int[M];
41 solve(0, 0, 1, basket, N, M);
42 delete[] basket;
43 }
44 return 0;
45 }

推荐阅读
  • 本题通过将每个矩形视为一个节点,根据其相对位置构建拓扑图,并利用深度优先搜索(DFS)或状态压缩动态规划(DP)求解最小涂色次数。本文详细解析了该问题的建模思路与算法实现。 ... [详细]
  • Codeforces Round #566 (Div. 2) A~F个人题解
    Dashboard-CodeforcesRound#566(Div.2)-CodeforcesA.FillingShapes题意:给你一个的表格,你 ... [详细]
  • 本文详细探讨了KMP算法中next数组的构建及其应用,重点分析了未改良和改良后的next数组在字符串匹配中的作用。通过具体实例和代码实现,帮助读者更好地理解KMP算法的核心原理。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • UNP 第9章:主机名与地址转换
    本章探讨了用于在主机名和数值地址之间进行转换的函数,如gethostbyname和gethostbyaddr。此外,还介绍了getservbyname和getservbyport函数,用于在服务器名和端口号之间进行转换。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 题目Link题目学习link1题目学习link2题目学习link3%%%受益匪浅!-----&# ... [详细]
  • 本实验主要探讨了二叉排序树(BST)的基本操作,包括创建、查找和删除节点。通过具体实例和代码实现,详细介绍了如何使用递归和非递归方法进行关键字查找,并展示了删除特定节点后的树结构变化。 ... [详细]
  • 本题探讨了一种字符串变换方法,旨在判断两个给定的字符串是否可以通过特定的字母替换和位置交换操作相互转换。核心在于找到这些变换中的不变量,从而确定转换的可能性。 ... [详细]
  • 本文介绍如何使用Objective-C结合dispatch库进行并发编程,以提高素数计数任务的效率。通过对比纯C代码与引入并发机制后的代码,展示dispatch库的强大功能。 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • C++: 实现基于类的四面体体积计算
    本文介绍如何使用C++编程语言,通过定义类和方法来计算由四个三维坐标点构成的四面体体积。文中详细解释了四面体体积的数学公式,并提供了两种不同的实现方式。 ... [详细]
  • 本文详细介绍了如何构建一个高效的UI管理系统,集中处理UI页面的打开、关闭、层级管理和页面跳转等问题。通过UIManager统一管理外部切换逻辑,实现功能逻辑分散化和代码复用,支持多人协作开发。 ... [详细]
  • 本文详细解析了Python中的os和sys模块,介绍了它们的功能、常用方法及其在实际编程中的应用。 ... [详细]
author-avatar
小森林
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有