热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

NOIP模拟测试17&18

NOIP模拟测试17&1817-T1给定一个序列,选取其中一个闭区间,使得其中每个元素可以在重新排列后成为一个等比数列的子序列,问区间最长是?特判比值为1的情况,预处理比值2~10

NOIP模拟测试17&18

17-T1

给定一个序列,选取其中一个闭区间,使得其中每个元素可以在重新排列后成为一个等比数列的子序列,问区间最长是?

特判比值为1的情况,预处理比值2~1000的幂,存map里。接下来枚举左端点,算出比值,枚举右端点,用平衡树便携判断某个数是否已经在区间内出现过。

#include
using namespace std;
inline long long read()
{
long long x=0,fh=1; char ch=getchar();
while(ch<'0' || ch>'9'){if(ch=='-')fh=-1;ch=getchar();}
while(ch>='0' && ch<='9'){x=(x<<1LL)+(x<<3LL)+(ch^48LL);ch=getchar();}
return x*fh;
}
const int maxn=1e5+5;
const int mod=1e5+3;
const long long INF=1000000000000000000ll;
map fr;
long long a[maxn],mmax,mmin;
int ans=1,h[maxn],tot=1,n;
struct hash{
int num,nxt;
long long val;
}b[maxn<<4];
set s;
int main(){
for(unsigned long long i=1000;i>=2;i--)
{
for(unsigned long long j=i;j<=INF;j*=i)
{
if(j==0)
break;
fr[(long long)j]=i;
}
}
memset(h,-1,sizeof(h));
n=read();
long long lat=0;
int cnt=0;
for(int i=1;i<=n;i++){
a[i]=read();
if(a[i]==lat)
{
cnt++;
}
else
{
lat=a[i];
cnt=1;
}
ans=max(ans,cnt);
}
for(int l=1;l {
s.clear();
s.insert(a[l]);
mmax=max(a[l],a[l+1]);
mmin=min(a[l],a[l+1]);
if(mmin==mmax || mmax%mmin)
continue;
s.insert(a[l+1]);
int gys=fr[mmax/mmin];
ans=max(ans,2);
for(int r=l+2;r<=n;r++){
if(s.find(a[r])!=s.end())
break;
s.insert(a[r]);
mmax=max(a[r],a[r-1]);
mmin=min(a[r],a[r-1]);
if(mmax%mmin!=0)
break;
if(fr[mmax/mmin]!=gys)
break;
ans=max(ans,r-l+1);
}
}
printf("%d\n",ans);
return 0;
}



17-T2

对一个节点进行一次”精彩操作”付出的时间代价是这个节点到根节点路径上的轻边数量.

根节点自身进行精彩操作的代价一定是0.我们只关注最坏情况下的时间复杂度,求出每个节点进行一次精彩操作的代价,然后在这些代价中取最大值,就得到了这棵树此时的最坏时间复杂度.

每一个非叶节点将在它的所有儿子中等概率随机选择一个作为重儿子.给出一棵树,按上面的方式随机选择重儿子,求最坏时间复杂度的期望 \(mod1e9+7\)

设 \(f[i][j]\) 为以ii为根节点的子树中最坏时间复杂度小于等于jj的概率设 \(g[i][j]\) 为当前扫到的以ii为父亲节点的所有儿子最坏时间复杂度小于等于 \(j\) 的概率之和.

枚举当前哪一个节点充当重儿子、所有儿子、枚举最坏时间复杂度 \(k\).

如果第二重循环中枚举的儿子恰好是重儿子的话,那么父亲节点的最坏时间复杂度为 \(k\) 的情况可以由两种情况转移过来.

1.重儿子的时间复杂度恰好为 \(k\) 的概率乘上其它儿子时间复杂度小于等于 \(k\) 的概率

2.其它儿子的时间复杂度恰好为 \(k\) 的概率乘上重儿子的时间复杂度小于等于 \(k\) 的概率.


#includeusing namespace std;const int N=5000,M=10000,mod=1e9+7;struct bian{
int nxt,to;}b[M];int head[N],cnt,n,son[N],fa[N],root=1,siz[N];long long ans,f[N][N],g[N],h[N];void add(int from,int to){
b[++cnt].nxt=head[from];
b[cnt].to=to;
head[from]=cnt;}int qp(int a,int b){
int rec=1;
while(b>0)
{
if(b&1)
{
rec=1LL*rec*a%mod;
}
a=1LL*a*a%mod;
b>>=1;
}
return rec;}void dfs(int u){
siz[u]=1;
int i=head[u],v;
while(i)
{
v=b[i].to;
if(v!=fa[u])
{
dfs(v);
siz[u]+=siz[v];
}
i=b[i].nxt;
}
int p=qp(son[u],mod-2);
i=head[u];
while(i)
{
v=b[i].to;
if(v==fa[u])
{
i=b[i].nxt;
continue;
}
for(int j=0;j<=n;j++)
g[j]=1;
int j=head[u],v2;
while(j)
{
v2=b[j].to;
if(v2==fa[u])
{
j=b[j].nxt;
continue;
}
for(int k=0;k<=siz[v2]+1;k++)
{
long long qt=g[k],xz=f[v2][k];
if(k)
{
qt-=g[k-1];
xz-=f[v2][k-1];
}
if(v==v2)
{
h[k]=(qt*f[v2][k]%mod+xz*g[k]%mod-xz*qt%mod+mod)%mod;
}
else
{
xz=f[v2][k-1];
if(k>1)
xz-=f[v2][k-2];
h[k]=(qt*f[v2][k-1]%mod+xz*g[k]%mod-xz*qt%mod+mod)%mod;
}
}
g[0]=h[0],h[0]=0;
for(int k=1;k<=siz[v2]+1;k++)
{
g[k]=(g[k-1]+h[k])%mod;
h[k]=0;
}
j=b[j].nxt;
}
for(int j=siz[u];j>=1;j--)
{
g[j]=(g[j]-g[j-1]+mod)%mod;
}
if(u==1)
{
int xxx;
xxx++;
}
for(int j=0;j<=siz[u];j++){
f[u][j]=(f[u][j]+g[j]*p%mod)%mod;
}
i=b[i].nxt;
}
if(son[u]==0)
f[u][0]=1;
for(int i=1;i<=siz[u]+1;i++)
{
f[u][i]=(f[u][i]+f[u][i-1])%mod;
}}int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&son[i]);
for(int j=1,v;j<=son[i];j++)
{
scanf("%d",&v);
fa[v]=i;
add(i,v);
add(v,i);
}
}
while(fa[root])
root=fa[root];
dfs(root);
for(int i=1;i<=n;i++)
{// cout< ans=(ans+1LL*i*(f[root][i]-f[root][i-1]+mod)%mod+mod)%mod;
}
printf("%lld\n",ans);
return 0;}



17-T3

在学生的联名提议下,HZ决定在校园内建造一个新型游乐场。

游乐场一共有n个项目,在不同的项目之间有一些走廊相连。

为了保证学生能顺利的游玩完游乐场的每个项目,一个建造方案需要满足以下的条件:将游乐园抽象为一张图,把走廊视为无向边,整张图无重边,无自环。可以通过恰好一次操作使得图中存在一条欧拉回路(从某个点出发经过所有边恰好一次并最终回到起点的路径),其中操作可以是添加一条不在图中的边或是删去一条图中的边。要求操作后的图仍满足条件1,且图中任意两点可以互相到达。设计游乐场布局的任务被委托给了学生会会长小R,小R想先统计出所有的方案,但她数数向来数不清,所以你能不能帮小R统计一下一共有多少种建造方案。

一句话题意:求 \(n\)个点任意连无向边组成的欧拉回路种类乘\(C_{n}^{2}\)

引理

1.无向连通图奇数出度的点个数为偶数.

2.度数均为偶数的无向联通图为欧拉回路.

设:

\(f[i]\) 表示 \(i\) 个点任意连无向边组成的欧拉回路种类.

\(g[i]\) 表示 \(i-1\) 个点任意连无向边组成的图种类.显然有 \(g[i]=2^{C_{i}^{2}}\)

\(i-1\) 个点的无向连通图向 \(i\) 点连成欧拉回路的充要条件是,将原图中奇数出度的点与 \(i\) 点连接。

我们运用容斥,\(f[i]=g[i]-\sum_{j=1}^{i-1}f[j]g[i-j]C_{i-1}^{j-1}\)

(总情况减去不连通的)

#include
#define N 5000
using namespace std;
const int mod=1e9+7;
inline int read()
{
int s=0,w=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')w=-1;ch=getchar();}
while(isdigit(ch)){s=s*10+ch-'0';ch=getchar();}
return s*w;
}
int n;
long long C[N][N],p[N],f[N];
long long qp(long long a,long long b)
{
long long rec=1;
while(b>0)
{
if(b&1)
{
rec*=a;
rec%=mod;
}
a*=a;
a%=mod;
b>>=1;
}
return rec;
}
int main()
{
n=read();
for(int i=0;i<=n;i++)
C[i][0]=1;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=i;j++)
{
C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
}
}
// for(int i=1;i<=n;i++)
// {
// for(int j=1;j<=i;j++)
// {
// printf("%lld ",C[i][j]);
// C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
// }
// puts("");
// }
for(int i=1;i<=n;i++)
p[i]=qp(2,C[i-1][2]);
for(int i=1;i<=n;i++)
{
long long sum=0;
f[i]=p[i];
for(int j=1;j<=i-1;j++)
{
f[i]-=f[j]*p[i-j]%mod*C[i-1][j-1]%mod;
f[i]%=mod;
}
f[i]=((f[i]%mod+mod)%mod+mod)%mod;
}
printf("%lld\n",((f[n]*C[n][2]%mod+mod)%mod+mod)%mod);
return 0;
}
/*
欧拉回路:无向图的每个节点的度数都是偶数度
无向图奇数度的点一定为偶数
n^2递推,f[i]表示i个点的欧拉回路最终图种类数
最终答案为f[n]*C[n][2]
不合法的转移
j个点的欧拉回路
*/


推荐阅读
  • 根据最新发布的《互联网人才趋势报告》,尽管大量IT从业者已转向Python开发,但随着人工智能和大数据领域的迅猛发展,仍存在巨大的人才缺口。本文将详细介绍如何使用Python编写一个简单的爬虫程序,并提供完整的代码示例。 ... [详细]
  • 本文详细介绍了如何在ECharts中使用线性渐变色,通过echarts.graphic.LinearGradient方法实现。文章不仅提供了完整的代码示例,还解释了各个参数的具体含义及其应用场景。 ... [详细]
  • 本文详细介绍了中央电视台电影频道的节目预告,并通过专业工具分析了其加载方式,确保用户能够获取最准确的电视节目信息。 ... [详细]
  • 使用GDI的一些AIP函数我们可以轻易的绘制出简 ... [详细]
  • 在多线程编程环境中,线程之间共享全局变量可能导致数据竞争和不一致性。为了解决这一问题,Linux提供了线程局部存储(TLS),使每个线程可以拥有独立的变量副本,确保线程间的数据隔离与安全。 ... [详细]
  • 深入理解Redis的数据结构与对象系统
    本文详细探讨了Redis中的数据结构和对象系统的实现,包括字符串、列表、集合、哈希表和有序集合等五种核心对象类型,以及它们所使用的底层数据结构。通过分析源码和相关文献,帮助读者更好地理解Redis的设计原理。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • 本文深入探讨了C++对象模型中的一些细节问题,特别是虚拟继承和析构函数的处理。通过具体代码示例和详细分析,揭示了书中某些观点的不足之处,并提供了更合理的解释。 ... [详细]
  • Codeforces Round #566 (Div. 2) A~F个人题解
    Dashboard-CodeforcesRound#566(Div.2)-CodeforcesA.FillingShapes题意:给你一个的表格,你 ... [详细]
  • 本题通过将每个矩形视为一个节点,根据其相对位置构建拓扑图,并利用深度优先搜索(DFS)或状态压缩动态规划(DP)求解最小涂色次数。本文详细解析了该问题的建模思路与算法实现。 ... [详细]
  • 本题探讨如何通过最大流算法解决农场排水系统的设计问题。题目要求计算从水源点到汇合点的最大水流速率,使用经典的EK(Edmonds-Karp)和Dinic算法进行求解。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 本文介绍了几种不同的编程方法来计算从1到n的自然数之和,包括循环、递归、面向对象以及模板元编程等技术。每种方法都有其特点和适用场景。 ... [详细]
  • 本次考试于2016年10月25日上午7:50至11:15举行,主要涉及数学专题,特别是斐波那契数列的性质及其在编程中的应用。本文将详细解析考试中的题目,并提供解题思路和代码实现。 ... [详细]
  • 本文探讨了将类成员属性设置为私有的重要性,并通过具体代码示例展示了如何实现对这些属性的有效控制。私有成员属性有助于增强数据的安全性和完整性,确保只有经过验证的数据才能被修改。 ... [详细]
author-avatar
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有