热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

不同优化算法的比较分析及实验验证

本文介绍了神经网络优化中常用的优化方法,包括学习率调整和梯度估计修正,并通过实验验证了不同优化算法的效果。实验结果表明,Adam算法在综合考虑学习率调整和梯度估计修正方面表现较好。该研究对于优化神经网络的训练过程具有指导意义。

目录

7.3 不同优化算法的比较分析

7.3.1 优化算法的实验设定

7.3.1.1 2D可视化实验

7.3.1.2 简单拟合实验

分别实例化自定义SimpleBatchGD优化器和调用torch.optim.SGD API, 验证自定义优化器的正确性

​​​​​​​7.3.2 学习率调整

7.3.2.1 AdaGrad算法

7.3.2.2 RMSprop算法

7.3.3 梯度估计修正

7.3.3.1 动量法

7.3.3.2 Adam算法

7.3.4 不同优化器的3D可视化对比

【选做题】

总结

参考文献 


7.3 不同优化算法的比较分析

飞桨AI Studio - 人工智能学习与实训社区 (baidu.com)

除了批大小对模型收敛速度的影响外,学习率梯度估计也是影响神经网络优化的重要因素。

神经网络优化中常用的优化方法也主要是如下两方面的改进,包括:

  • 学习率调整:通过自适应地调整学习率使得优化更稳定。AdaGrad、RMSprop、AdaDelta算法等。
  • 梯度估计修正:通过修正每次迭代时估计的梯度方向来加快收敛速度。动量法、Nesterov加速梯度方法等。

本节还会介绍综合学习率调整和梯度估计修正的优化算法,如Adam算法

7.3.1 优化算法的实验设定

7.3.1.1 2D可视化实验

为了更好地展示不同优化算法的能力对比,我们选择一个二维空间中的凸函数,然后用不同的优化算法来寻找最优解,并可视化梯度下降过程的轨迹

将被优化函数实现为OptimizedFunction算子,其forward方法是Sphere函数的前向计算,backward方法则计算被优化函数对x的偏导。代码实现如下:

from nndl.op import Op
import torch
class OptimizedFunction(Op):
    def __init__(self, w):
        super(OptimizedFunction, self).__init__()
        self.w = torch.as_tensor(w,dtype=torch.float32)
        self.params = {'x': torch.as_tensor(0,dtype=torch.float32)}
        self.grads = {'x': torch.as_tensor(0,dtype=torch.float32)}

    def forward(self, x):
        self.params['x'] = x
        return torch.matmul(self.w.T, torch.square(self.params['x']))

    def backward(self):
        self.grads['x'] = 2 * torch.multiply(self.w.T, self.params['x'])

 nndl.op.Op:

class Op(object):
    def __init__(self):
        pass

    def __call__(self, inputs):
        return self.forward(torch.as_tensor(inputs,dtype=torch.float32))

    def forward(self, inputs):
        raise NotImplementedError

    def backward(self, inputs):
        raise NotImplementedError

 小批量梯度下降优化器 复用3.1.4.3节定义的梯度下降优化器SimpleBatchGD。
训练函数 定义一个简易的训练函数,记录梯度下降过程中每轮的参数x和损失。代码实现如下:

def train_f(model, optimizer, x_init, epoch):
    x = x_init
    all_x = []
    losses = []
    for i in range(epoch):
        all_x.append(copy.copy(x.numpy()))
        loss = model(x)
        losses.append(loss)
        model.backward()
        optimizer.step()
        x = model.params['x']
    return torch.as_tensor(all_x), losses

 可视化函数 定义一个Visualization类,用于绘制x的更新轨迹。代码实现如下:

import numpy as np
import matplotlib.pyplt as plt
class Visualization(object):
    def __init__(self):
        x1 = np.arange(-5, 5, 0.1)
        x2 = np.arange(-5, 5, 0.1)
        x1, x2 = np.meshgrid(x1, x2)
        self.init_x = torch.as_tensor([x1, x2])

    def plot_2d(self, model, x, fig_name):
        fig, ax = plt.subplots(figsize=(10, 6))
        cp = ax.contourf(self.init_x[0], self.init_x[1], model(self.init_x.transpose(1,0)), colors=['#e4007f', '#f19ec2', '#e86096', '#eb7aaa', '#f6c8dc', '#f5f5f5', '#000000'])
        c = ax.contour(self.init_x[0], self.init_x[1], model(self.init_x.transpose(1,0)), colors='black')
        cbar = fig.colorbar(cp)
        ax.plot(x[:, 0], x[:, 1], '-o', color='#000000')
        ax.plot(0, 'r*', markersize=18, color='#fefefe')

        ax.set_xlabel('$x1$')
        ax.set_ylabel('$x2$')

        ax.set_xlim((-2, 5))
        ax.set_ylim((-2, 5))
        plt.savefig(fig_name)

 定义train_and_plot_f函数,调用train_f和Visualization,训练模型并可视化参数更新轨迹。代码实现如下:

def train_and_plot_f(model, optimizer, epoch, fig_name):
    x_init = torch.as_tensor([3, 4], dtype=torch.float32)
    print('x1 initiate: {}, x2 initiate: {}'.format(x_init[0].numpy(), x_init[1].numpy()))
    x, losses = train_f(model, optimizer, x_init, epoch)
    losses = np.array(losses)

    # 展示x1、x2的更新轨迹
    vis = Visualization()
    vis.plot_2d(model, x, fig_name)

 模型训练与可视化:

from nndl.op import SimpleBatchGD
# 固定随机种子
torch.seed()
w = torch.as_tensor([0.2, 2])
model = OptimizedFunction(w)
opt = SimpleBatchGD(init_lr=0.2, model=model)
# train_and_plot_f(model, opt, epoch=20, fig_name='opti-vis-para.pdf')

 nndl.op.SimpleBatchGD:

class SimpleBatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)

    def step(self):
        #参数更新
        if isinstance(self.model.params, dict):
            for key in self.model.params.keys():
                self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]

 Optimizer:

# 优化器基类
class Optimizer(object):
    def __init__(self, init_lr, model):
        self.init_lr = init_lr
        #指定优化器需要优化的模型
        self.model = model

    @abstractmethod
    def step(self):
        pass

 实验结果

 输出图中不同颜色代表f(x1,x2)的值,具体数值可以参考图右侧的对应表,比如深粉色区域代表f(x1,x2)在0~8之间,不同颜色间黑色的曲线是等值线,代表落在该线上的点对应的f(x1,x2)的值都相同。

​​​​​​​7.3.1.2 简单拟合实验

这里我们随机生成一组数据作为数据样本,再构建一个简单的单层前馈神经网络,用于前向计算。 

数据集构建 随机生成一些训练数据X,并根据一个预定义函数y=0.5×x1+0.8×x2+0.01×noise计算得到y,再将X和y拼接起来得到训练样本

# 固定随机种子
torch.seed()
# 随机生成shape为(1000,2)的训练数据
X = torch.randn([1000, 2])
w = torch.as_tensor([0.5, 0.8])
w = torch.unsqueeze(w, dim=1)
noise = 0.01 * torch.rand([1000])
noise = torch.unsqueeze(noise, dim=1)
# 计算y
y = torch.matmul(X, w) + noise
# 打印X, y样本
print('X: ', X[0].numpy())
print('y: ', y[0].numpy())

# X,y组成训练样本数据
data = torch.concat((X, y), dim=1)
print('input data shape: ', data.shape)
print('data: ', data[0].numpy())

 运行结果

X:  [-1.1258398 -1.1523602]
y:  [-1.4770346]
input data shape:  torch.Size([1000, 3])
data:  [-1.1258398 -1.1523602 -1.4770346]

 定义Linear算子,实现一个线性层的前向和反向计算

class Linear(Op):
    def __init__(self, input_size,  weight_init=np.random.standard_normal, bias_init=torch.zeros):
        self.params = {}
        self.params['W'] = weight_init([input_size, 1])
        self.params['W'] = torch.as_tensor(self.params['W'],dtype=torch.float32)
        self.params['b'] = bias_init([1])

        self.inputs = None
        self.grads = {}

    def forward(self, inputs):
        self.inputs = inputs
        self.outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
        return self.outputs

    def backward(self, labels):
        K = self.inputs.shape[0]
        self.grads['W'] = 1./ K*torch.matmul(self.inputs.T, (self.outputs - labels))
        self.grads['b'] = 1./K* torch.sum(self.outputs-labels, dim=0)

这里backward函数中实现的梯度并不是forward函数对应的梯度,而是最终损失关于参数的梯度.由于这里的梯度是手动计算的,所以直接给出了最终的梯度 

训练函数 在准备好样本数据和网络以后,复用优化器SimpleBatchGD类,使用小批量梯度下降来进行简单的拟合实验,模型训练train函数的代码实现如下

def train(data, num_epochs, batch_size, model, calculate_loss, optimizer, verbose=False):
    """
    训练神经网络
    输入:
        - data:训练样本
        - num_epochs:训练回合数
        - batch_size:批大小
        - model:实例化的模型
        - calculate_loss:损失函数
        - optimizer:优化器
        - verbose:日志显示,默认为False
    输出:
        - iter_loss:每一次迭代的损失值
        - epoch_loss:每个回合的平均损失值
    """
    # 记录每个回合损失的变化
    epoch_loss = []
    # 记录每次迭代损失的变化
    iter_loss = []
    N = len(data)
    for epoch_id in range(num_epochs):
        # np.random.shuffle(data) #不再随机打乱数据
        # 将训练数据进行拆分,每个mini_batch包含batch_size条的数据
        mini_batches = [data[i:i+batch_size] for i in range(0, N, batch_size)]
        for iter_id, mini_batch in enumerate(mini_batches):
            # data中前两个分量为X
            inputs = mini_batch[:, :-1]
            # data中最后一个分量为y
            labels = mini_batch[:, -1:]
            # 前向计算
            outputs = model(inputs)
            # 计算损失
            loss = calculate_loss(outputs, labels).numpy()
            # 计算梯度
            model.backward(labels)
            # 梯度更新
            optimizer.step()
            iter_loss.append(loss)
        # verbose = True 则打印当前回合的损失
        if verbose:
            print('Epoch {:3d}, loss = {:.4f}'.format(epoch_id, np.mean(iter_loss)))
        epoch_loss.append(np.mean(iter_loss))
    return iter_loss, epoch_loss

 优化过程可视化 定义plot_loss函数,用于绘制损失函数变化趋势 

def plot_loss(iter_loss, epoch_loss, fig_name):
    """
    可视化损失函数的变化趋势
    """
    plt.figure(figsize=(10, 4))
    ax1 = plt.subplot(121)
    ax1.plot(iter_loss, color='#e4007f')
    plt.title('iteration loss')
    ax2 = plt.subplot(122)
    ax2.plot(epoch_loss, color='#f19ec2')
    plt.title('epoch loss')
    plt.savefig(fig_name)
    plt.show()

 定义train_and_plot函数,调用train和plot_loss函数,训练并展示每个回合和每次迭代(Iteration)的损失变化情况 

import torch.nn as nn
def train_and_plot(optimizer, fig_name):
    """
    训练网络并画出损失函数的变化趋势
    输入:
        - optimizer:优化器
    """
    # 定义均方差损失
    mse = nn.MSELoss()
    iter_loss, epoch_loss = train(data, num_epochs=30, batch_size=64, model=model, calculate_loss=mse, optimizer=optimizer)
    plot_loss(iter_loss, epoch_loss, fig_name)

训练网络并可视化损失函数的变化趋势 

# 固定随机种子
torch.manual_seed(0)
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = SimpleBatchGD(init_lr=0.01, model=model)
train_and_plot(opt, 'opti-loss.pdf')

 ​​​​​​​

 从输出结果看,loss在不断减小,模型逐渐收敛。

分别实例化自定义SimpleBatchGD优化器和调用torch.optim.SGD API, 验证自定义优化器的正确性

# 固定随机种子
torch.seed()
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = SimpleBatchGD(init_lr=0.01, model=model)

x = data[0, :-1].unsqueeze(0)
y = data[0, -1].unsqueeze(0)

model1 = Linear(2)
print('model1 parameter W: ', model1.params['W'].numpy())
opt1 = SimpleBatchGD(init_lr=0.01, model=model1)
output1 = model1(x)

model2 = nn.Linear(2, 1)
model2.weight = torch.nn.Parameter(model1.params['W'])
print('model2 parameter W: ', model2.state_dict()['weight'].numpy())
output2 = model2(x.T)

model1.backward(y)
opt1.step()
print('model1 parameter W after train step: ', model1.params['W'].numpy())

opt2 = torch.optim.SGD(lr=0.01, params=model2.parameters())
loss = torch.nn.functional.mse_loss(output2, y) / 2
loss.backward()
opt2.step()
opt2.zero_grad()
print('model2 parameter W after train step: ', model2.state_dict()['weight'].numpy())

 运行结果

model1 parameter W:  [[ 1.5409961]
 [-0.2934289]]
model2 parameter W:  [[ 1.5409961 -0.2934289]]
model1 parameter W after train step:  [[ 1.5418997 ]
 [-0.29250407]]

model2 parameter W after train step:  [[ 1.5417418 -0.2926655]]

 从输出结果看,在一次梯度更新后,两个模型的参数值保持一致,证明优化器实现正确

​​​​​​​7.3.2 学习率调整

学习率是神经网络优化时的重要超参数。在梯度下降法中,学习率αα的取值非常关键,如果取值过大就不会收敛,如果过小则收敛速度太慢。

7.3.2.1 AdaGrad算法

构建优化器 定义Adagrad类,继承Optimizer类。定义step函数调用adagrad进行参数更新

class Adagrad(Optimizer):
    def __init__(self, init_lr, model, epsilon):
        """
        Adagrad 优化器初始化
        输入:
            - init_lr: 初始学习率
            - model:模型,model.params存储模型参数值
            - epsilon:保持数值稳定性而设置的非常小的常数
        """
        super(Adagrad, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.epsilon = epsilon
 
    def adagrad(self, x, gradient_x, G, init_lr):
        """
        adagrad算法更新参数,G为参数梯度平方的累计值。
        """
        G += gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G
 
    def step(self):
        """
        参数更新
        """
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)

 2D可视化实验 使用被优化函数展示Adagrad算法的参数更新轨迹

# 固定随机种子
torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = Adagrad(init_lr=0.5, model=model, epsilon=1e-7)
train_and_plot_f(model, opt, epoch=50, fig_name='opti-vis-para2.pdf')

 

从输出结果看,AdaGrad算法在前几个回合更新时参数更新幅度较大,随着回合数增加,学习率逐渐缩小,参数更新幅度逐渐缩小。在AdaGrad算法中,如果某个参数的偏导数累积比较大,其学习率相对较小。相反,如果其偏导数累积较小,其学习率相对较大。但整体随着迭代次数的增加,学习率逐渐缩小。该算法的缺点是在经过一定次数的迭代依然没有找到最优点时,由于这时的学习率已经非常小,很难再继续找到最优点。

简单拟合实验 训练单层线性网络,验证损失是否收敛。代码实现如下:

# 固定随机种子
torch.manual_seed(0)
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Adagrad(init_lr=0.1, model=model, epsilon=1e-7)
train_and_plot(opt, 'opti-loss2.pdf')

 

7.3.2.2 RMSprop算法

RMSprop算法是一种自适应学习率的方法,可以在有些情况下避免AdaGrad算法中学习率不断单调下降以至于过早衰减的缺点。

构建优化器 定义RMSprop类,继承Optimizer类。定义step函数调用rmsprop更新参数 

class RMSprop(Optimizer):
    def __init__(self, init_lr, model, beta, epsilon):
        """
        RMSprop优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta:衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(RMSprop, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.beta = beta
        self.epsilon = epsilon
 
    def rmsprop(self, x, gradient_x, G, init_lr):
        """
        rmsprop算法更新参数,G为迭代梯度平方的加权移动平均
        """
        G = self.beta * G + (1 - self.beta) * gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)

 2D可视化实验 使用被优化函数展示RMSprop算法的参数更新轨迹 

# 固定随机种子
torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = RMSprop(init_lr=0.1, model=model, beta=0.9, epsilon=1e-7)
train_and_plot_f(model, opt, epoch=50, fig_name='opti-vis-para3.pdf')

 简单拟合实验 训练单层线性网络,进行简单的拟合实验

# 固定随机种子
torch.manual_seed(0)
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = RMSprop(init_lr=0.1, model=model, beta=0.9, epsilon=1e-7)
train_and_plot(opt, 'opti-loss3.pdf')

  

7.3.3 梯度估计修正

除了调整学习率之外,还可以进行梯度估计修正。在小批量梯度下降法中,由于每次迭代的样本具有一定的随机性,因此每次迭代的梯度估计和整个训练集上的最优梯度并不一致。如果每次选取样本数量比较小,损失会呈振荡的方式下降。

一种有效地缓解梯度估计随机性的方式是通过使用最近一段时间内的平均梯度来代替当前时刻的随机梯度来作为参数更新的方向,从而提高优化速度。

7.3.3.1 动量法

用之前积累动量来替代真正的梯度。每次迭代的梯度可以看作加速度。

构建优化器 定义Momentum类,继承Optimizer类。定义step函数调用momentum进行参数更新

class Momentum(Optimizer):
    def __init__(self, init_lr, model, rho):
        """
        Momentum优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - rho:动量因子
        """
        super(Momentum, self).__init__(init_lr=init_lr, model=model)
        self.delta_x = {}
        for key in self.model.params.keys():
            self.delta_x[key] = 0
        self.rho = rho
 
    def momentum(self, x, gradient_x, delta_x, init_lr):
        """
        momentum算法更新参数,delta_x为梯度的加权移动平均
        """
        delta_x = self.rho * delta_x - init_lr * gradient_x
        x += delta_x
        return x, delta_x
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],
                                                                      self.model.grads[key],
                                                                      self.delta_x[key],
                                                                      self.init_lr)

   2D可视化实验 使用被优化函数展示Momentum算法的参数更新轨迹

# 固定随机种子
torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = Momentum(init_lr=0.01, model=model, rho=0.9)
train_and_plot_f(model, opt, epoch=50, fig_name='opti-vis-para4.pdf')

从输出结果看,在模型训练初期,梯度方向比较一致,参数更新幅度逐渐增大,起加速作用;在迭代后期,参数更新幅度减小,在收敛值附近振荡

 简单拟合实验 训练单层线性网络,进行简单的拟合实验。

# 固定随机种子
torch.manual_seed(0)
 
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Momentum(init_lr=0.01, model=model, rho=0.9)
train_and_plot(opt, 'opti-loss4.pdf')

7.3.3.2 Adam算法

Adam算法(自适应矩估计算法)可以看作动量法RMSprop算法的结合,不但使用动量作为参数更新方向,而且可以自适应调整学习率。

构建优化器 定义Adam类,继承Optimizer类。定义step函数调用adam函数更新参数 

class Adam(Optimizer):
    def __init__(self, init_lr, model, beta1, beta2, epsilon):
        """
        Adam优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta1, beta2:移动平均的衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(Adam, self).__init__(init_lr=init_lr, model=model)
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.M, self.G = {}, {}
        for key in self.model.params.keys():
            self.M[key] = 0
            self.G[key] = 0
        self.t = 1
 
    def adam(self, x, gradient_x, G, M, t, init_lr):
        """
        adam算法更新参数
        输入:
            - x:参数
            - G:梯度平方的加权移动平均
            - M:梯度的加权移动平均
            - t:迭代次数
            - init_lr:初始学习率
        """
        M = self.beta1 * M + (1 - self.beta1) * gradient_x
        G = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2
        M_hat = M / (1 - self.beta1 ** t)
        G_hat = G / (1 - self.beta2 ** t)
        t += 1
        x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hat
        return x, G, M, t
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],
                                                                                 self.model.grads[key],
                                                                                 self.G[key],
                                                                                 self.M[key],
                                                                                 self.t,
                                                                                 self.init_lr)

  2D可视化实验 使用被优化函数展示Adam算法的参数更新轨迹 

# 固定随机种子
torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = Adam(init_lr=0.2, model=model, beta1=0.9, beta2=0.99, epsilon=1e-7)
train_and_plot_f(model, opt, epoch=20, fig_name='opti-vis-para5.pdf')

  从输出结果看,Adam算法可以自适应调整学习率,参数更新更加平稳

简单拟合实验 训练单层线性网络,进行简单的拟合实验 ​​​​​​​

# 固定随机种子
torch.manual_seed(0)
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Adam(init_lr=0.1, model=model, beta1=0.9, beta2=0.99, epsilon=1e-7)
train_and_plot(opt, 'opti-loss5.pdf')

7.3.4 不同优化器的3D可视化对比

百度AI Studio课程_学习成就梦想,AI遇见未来_AI课程 - 百度AI Studio - 人工智能学习与实训社区 (baidu.com)

 

import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longest
 
 
class Op(object):
    def __init__(self):
        pass
 
    def __call__(self, inputs):
        return self.forward(inputs)
 
    # 输入:张量inputs
    # 输出:张量outputs
    def forward(self, inputs):
        # return outputs
        raise NotImplementedError
 
    # 输入:最终输出对outputs的梯度outputs_grads
    # 输出:最终输出对inputs的梯度inputs_grads
    def backward(self, outputs_grads):
        # return inputs_grads
        raise NotImplementedError
 
 
class Optimizer(object):  # 优化器基类
    def __init__(self, init_lr, model):
        """
        优化器类初始化
        """
        # 初始化学习率,用于参数更新的计算
        self.init_lr = init_lr
        # 指定优化器需要优化的模型
        self.model = model
 
    def step(self):
        """
        定义每次迭代如何更新参数
        """
        pass
 
 
class SimpleBatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)
 
    def step(self):
        # 参数更新
        if isinstance(self.model.params, dict):
            for key in self.model.params.keys():
                self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]
 
 
class Adagrad(Optimizer):
    def __init__(self, init_lr, model, epsilon):
        """
        Adagrad 优化器初始化
        输入:
            - init_lr: 初始学习率 - model:模型,model.params存储模型参数值  - epsilon:保持数值稳定性而设置的非常小的常数
        """
        super(Adagrad, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.epsilon = epsilon
 
    def adagrad(self, x, gradient_x, G, init_lr):
        """
        adagrad算法更新参数,G为参数梯度平方的累计值。
        """
        G += gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G
 
    def step(self):
        """
        参数更新
        """
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)
 
 
class RMSprop(Optimizer):
    def __init__(self, init_lr, model, beta, epsilon):
        """
        RMSprop优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta:衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(RMSprop, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.beta = beta
        self.epsilon = epsilon
 
    def rmsprop(self, x, gradient_x, G, init_lr):
        """
        rmsprop算法更新参数,G为迭代梯度平方的加权移动平均
        """
        G = self.beta * G + (1 - self.beta) * gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)
 
 
class Momentum(Optimizer):
    def __init__(self, init_lr, model, rho):
        """
        Momentum优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - rho:动量因子
        """
        super(Momentum, self).__init__(init_lr=init_lr, model=model)
        self.delta_x = {}
        for key in self.model.params.keys():
            self.delta_x[key] = 0
        self.rho = rho
 
    def momentum(self, x, gradient_x, delta_x, init_lr):
        """
        momentum算法更新参数,delta_x为梯度的加权移动平均
        """
        delta_x = self.rho * delta_x - init_lr * gradient_x
        x += delta_x
        return x, delta_x
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],
                                                                      self.model.grads[key],
                                                                      self.delta_x[key],
                                                                      self.init_lr)
 
 
class Adam(Optimizer):
    def __init__(self, init_lr, model, beta1, beta2, epsilon):
        """
        Adam优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta1, beta2:移动平均的衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(Adam, self).__init__(init_lr=init_lr, model=model)
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.M, self.G = {}, {}
        for key in self.model.params.keys():
            self.M[key] = 0
            self.G[key] = 0
        self.t = 1
 
    def adam(self, x, gradient_x, G, M, t, init_lr):
        """
        adam算法更新参数
        输入:
            - x:参数
            - G:梯度平方的加权移动平均
            - M:梯度的加权移动平均
            - t:迭代次数
            - init_lr:初始学习率
        """
        M = self.beta1 * M + (1 - self.beta1) * gradient_x
        G = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2
        M_hat = M / (1 - self.beta1 ** t)
        G_hat = G / (1 - self.beta2 ** t)
        t += 1
        x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hat
        return x, G, M, t
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],
                                                                                 self.model.grads[key],
                                                                                 self.G[key],
                                                                                 self.M[key],
                                                                                 self.t,
                                                                                 self.init_lr)
 
 
class OptimizedFunction3D(Op):
    def __init__(self):
        super(OptimizedFunction3D, self).__init__()
        self.params = {'x': 0}
        self.grads = {'x': 0}
 
    def forward(self, x):
        self.params['x'] = x
        return x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]
 
    def backward(self):
        x = self.params['x']
        gradient1 = 2 * x[0] + x[1]
        gradient2 = 2 * x[1] + 3 * x[1] ** 2 + x[0]
        grad1 = torch.Tensor([gradient1])
        grad2 = torch.Tensor([gradient2])
        self.grads['x'] = torch.cat([grad1, grad2])
 
 
class Visualization3D(animation.FuncAnimation):
    """    绘制动态图像,可视化参数更新轨迹    """
 
    def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=600, blit=True, **kwargs):
        """
        初始化3d可视化类
        输入:
            xy_values:三维中x,y维度的值
            z_values:三维中z维度的值
            labels:每个参数更新轨迹的标签
            colors:每个轨迹的颜色
            interval:帧之间的延迟(以毫秒为单位)
            blit:是否优化绘图
        """
        self.fig = fig
        self.ax = ax
        self.xy_values = xy_values
        self.z_values = z_values
 
        frames = max(xy_value.shape[0] for xy_value in xy_values)
        self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]
                      for _, label, color in zip_longest(xy_values, labels, colors)]
        super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,
                                              interval=interval, blit=blit, **kwargs)
 
    def init_animation(self):
        # 数值初始化
        for line in self.lines:
            line.set_data([], [])
            # line.set_3d_properties(np.asarray([]))  # 源程序中有这一行,加上会报错。 Edit by David 2022.12.4
        return self.lines
 
    def animate(self, i):
        # 将x,y,z三个数据传入,绘制三维图像
        for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):
            line.set_data(xy_value[:i, 0], xy_value[:i, 1])
            line.set_3d_properties(z_value[:i])
        return self.lines
 
 
def train_f(model, optimizer, x_init, epoch):
    x = x_init
    all_x = []
    losses = []
    for i in range(epoch):
        all_x.append(copy.deepcopy(x.numpy()))  # 浅拷贝 改为 深拷贝, 否则List的原值会被改变。 Edit by David 2022.12.4.
        loss = model(x)
        losses.append(loss)
        model.backward()
        optimizer.step()
        x = model.params['x']
    return torch.Tensor(np.array(all_x)), losses
 
 
# 构建5个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.01, model=model1)
 
model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=0.5, model=model2, epsilon=1e-7)
 
model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.1, model=model3, beta=0.9, epsilon=1e-7)
 
model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.01, model=model4, rho=0.9)
 
model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.1, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)
 
models = [model1, model2, model3, model4, model5]
opts = [opt_gd, opt_adagrad, opt_rmsprop, opt_momentum, opt_adam]
 
x_all_opts = []
z_all_opts = []
 
# 使用不同优化器训练
 
for model, opt in zip(models, opts):
    x_init = torch.FloatTensor([2, 3])
    x_one_opt, z_one_opt = train_f(model, opt, x_init, 150)  # epoch
    # 保存参数值
    x_all_opts.append(x_one_opt.numpy())
    z_all_opts.append(np.squeeze(z_one_opt))
 
# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-3, 3, 0.1)
x2 = np.arange(-3, 3, 0.1)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))
 
model = OptimizedFunction3D()
 
# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy()  # 改为 model(init_x).numpy() David 2022.12.4
ax.plot_surface(X, Y, Z, cmap='rainbow')
 
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')
 
labels = ['SGD', 'AdaGrad', 'RMSprop', 'Momentum', 'Adam']
colors = ['#f6373c', '#f6f237', '#45f637', '#37f0f6', '#000000']
 
animator = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper left')
 
plt.show()
animator.save('animation.gif')  # 效果不好,估计被挡住了…… 有待进一步提高 Edit by David 2022.12.4

  从输出结果看,对于我们构建的函数,有些优化器如Momentum在参数更新时成功逃离鞍点,其他优化器在本次实验中收敛到鞍点处没有成功逃离。但这并不证明Momentum优化器是最好的优化器,在模型训练时使用哪种优化器,还要结合具体的场景和数据具体分析

【选做题】

  1. 编程实现下面的动画

import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longest
from matplotlib import cm
 
 
class Op(object):
    def __init__(self):
        pass
 
    def __call__(self, inputs):
        return self.forward(inputs)
 
    # 输入:张量inputs
    # 输出:张量outputs
    def forward(self, inputs):
        # return outputs
        raise NotImplementedError
 
    # 输入:最终输出对outputs的梯度outputs_grads
    # 输出:最终输出对inputs的梯度inputs_grads
    def backward(self, outputs_grads):
        # return inputs_grads
        raise NotImplementedError
 
 
class Optimizer(object):  # 优化器基类
    def __init__(self, init_lr, model):
        """
        优化器类初始化
        """
        # 初始化学习率,用于参数更新的计算
        self.init_lr = init_lr
        # 指定优化器需要优化的模型
        self.model = model
 
    def step(self):
        """
        定义每次迭代如何更新参数
        """
        pass
 
 
class SimpleBatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)
 
    def step(self):
        # 参数更新
        if isinstance(self.model.params, dict):
            for key in self.model.params.keys():
                self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]
 
 
class Adagrad(Optimizer):
    def __init__(self, init_lr, model, epsilon):
        """
        Adagrad 优化器初始化
        输入:
            - init_lr: 初始学习率 - model:模型,model.params存储模型参数值  - epsilon:保持数值稳定性而设置的非常小的常数
        """
        super(Adagrad, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.epsilon = epsilon
 
    def adagrad(self, x, gradient_x, G, init_lr):
        """
        adagrad算法更新参数,G为参数梯度平方的累计值。
        """
        G += gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G
 
    def step(self):
        """
        参数更新
        """
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)
 
 
class RMSprop(Optimizer):
    def __init__(self, init_lr, model, beta, epsilon):
        """
        RMSprop优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta:衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(RMSprop, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.beta = beta
        self.epsilon = epsilon
 
    def rmsprop(self, x, gradient_x, G, init_lr):
        """
        rmsprop算法更新参数,G为迭代梯度平方的加权移动平均
        """
        G = self.beta * G + (1 - self.beta) * gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)
 
 
class Momentum(Optimizer):
    def __init__(self, init_lr, model, rho):
        """
        Momentum优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - rho:动量因子
        """
        super(Momentum, self).__init__(init_lr=init_lr, model=model)
        self.delta_x = {}
        for key in self.model.params.keys():
            self.delta_x[key] = 0
        self.rho = rho
 
    def momentum(self, x, gradient_x, delta_x, init_lr):
        """
        momentum算法更新参数,delta_x为梯度的加权移动平均
        """
        delta_x = self.rho * delta_x - init_lr * gradient_x
        x += delta_x
        return x, delta_x
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],
                                                                      self.model.grads[key],
                                                                      self.delta_x[key],
                                                                      self.init_lr)
 
 
class Adam(Optimizer):
    def __init__(self, init_lr, model, beta1, beta2, epsilon):
        """
        Adam优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta1, beta2:移动平均的衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(Adam, self).__init__(init_lr=init_lr, model=model)
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.M, self.G = {}, {}
        for key in self.model.params.keys():
            self.M[key] = 0
            self.G[key] = 0
        self.t = 1
 
    def adam(self, x, gradient_x, G, M, t, init_lr):
        """
        adam算法更新参数
        输入:
            - x:参数
            - G:梯度平方的加权移动平均
            - M:梯度的加权移动平均
            - t:迭代次数
            - init_lr:初始学习率
        """
        M = self.beta1 * M + (1 - self.beta1) * gradient_x
        G = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2
        M_hat = M / (1 - self.beta1 ** t)
        G_hat = G / (1 - self.beta2 ** t)
        t += 1
        x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hat
        return x, G, M, t
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],
                                                                                 self.model.grads[key],
                                                                                 self.G[key],
                                                                                 self.M[key],
                                                                                 self.t,
                                                                                 self.init_lr)
 
 
class OptimizedFunction3D(Op):
    def __init__(self):
        super(OptimizedFunction3D, self).__init__()
        self.params = {'x': 0}
        self.grads = {'x': 0}
 
    def forward(self, x):
        self.params['x'] = x
        return - x[0] * x[0] / 2 + x[1] * x[1] / 1  # x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]
 
    def backward(self):
        x = self.params['x']
        gradient1 = - 2 * x[0] / 2
        gradient2 = 2 * x[1] / 1
        grad1 = torch.Tensor([gradient1])
        grad2 = torch.Tensor([gradient2])
        self.grads['x'] = torch.cat([grad1, grad2])
 
 
class Visualization3D(animation.FuncAnimation):
    """    绘制动态图像,可视化参数更新轨迹    """
 
    def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=100, blit=True, **kwargs):
        """
        初始化3d可视化类
        输入:
            xy_values:三维中x,y维度的值
            z_values:三维中z维度的值
            labels:每个参数更新轨迹的标签
            colors:每个轨迹的颜色
            interval:帧之间的延迟(以毫秒为单位)
            blit:是否优化绘图
        """
        self.fig = fig
        self.ax = ax
        self.xy_values = xy_values
        self.z_values = z_values
 
        frames = max(xy_value.shape[0] for xy_value in xy_values)
 
        self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]
                      for _, label, color in zip_longest(xy_values, labels, colors)]
        self.points = [ax.plot([], [], [], color=color, markeredgeblack', marker='o')[0]
                       for _, color in zip_longest(xy_values, colors)]
        # print(self.lines)
        super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,
                                              interval=interval, blit=blit, **kwargs)
 
    def init_animation(self):
        # 数值初始化
        for line in self.lines:
            line.set_data_3d([], [], [])
        for point in self.points:
            point.set_data_3d([], [], [])
        return self.points + self.lines
 
    def animate(self, i):
        # 将x,y,z三个数据传入,绘制三维图像
        for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):
            line.set_data_3d(xy_value[:i, 0], xy_value[:i, 1], z_value[:i])
        for point, xy_value, z_value in zip(self.points, self.xy_values, self.z_values):
            point.set_data_3d(xy_value[i, 0], xy_value[i, 1], z_value[i])
        return self.points + self.lines
 
 
def train_f(model, optimizer, x_init, epoch):
    x = x_init
    all_x = []
    losses = []
    for i in range(epoch):
        all_x.append(copy.deepcopy(x.numpy()))  # 浅拷贝 改为 深拷贝, 否则List的原值会被改变。 Edit by David 2022.12.4.
        loss = model(x)
        losses.append(loss)
        model.backward()
        optimizer.step()
        x = model.params['x']
    return torch.Tensor(np.array(all_x)), losses
 
 
# 构建5个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.05, model=model1)
 
model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=0.05, model=model2, epsilon=1e-7)
 
model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.05, model=model3, beta=0.9, epsilon=1e-7)
 
model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.05, model=model4, rho=0.9)
 
model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.05, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)
 
models = [model5, model2, model3, model4, model1]
opts = [opt_adam, opt_adagrad, opt_rmsprop, opt_momentum, opt_gd]
 
x_all_opts = []
z_all_opts = []
 
# 使用不同优化器训练
 
for model, opt in zip(models, opts):
    x_init = torch.FloatTensor([0.00001, 0.5])
    x_one_opt, z_one_opt = train_f(model, opt, x_init, 100)  # epoch
    # 保存参数值
    x_all_opts.append(x_one_opt.numpy())
    z_all_opts.append(np.squeeze(z_one_opt))
 
# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-1, 2, 0.01)
x2 = np.arange(-1, 1, 0.05)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))
 
model = OptimizedFunction3D()
 
# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy()  # 改为 model(init_x).numpy() David 2022.12.4
surf = ax.plot_surface(X, Y, Z, edgecolor='grey', cmap=cm.coolwarm)
# fig.colorbar(surf, shrink=0.5, aspect=1)
ax.set_zlim(-3, 2)
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')
 
labels = ['Adam', 'AdaGrad', 'RMSprop', 'Momentum', 'SGD']
colors = ['#8B0000', '#0000FF', '#000000', '#008B00', '#FF0000']
 
animator = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper right')
 
plt.show()
# animator.save('teaser' + '.gif', writer='imagemagick',fps=10) # 效果不好,估计被挡住了…… 有待进一步提高 Edit by David 2022.12.4

总结

本次实验是对不同优化算法的比较,对于AdaGrad和RMSprop算法有了更深的了解,通过代码实现动画效果展示出了不同优化算法之间的区别,通过本次实验,也了解了深拷贝和浅拷贝,浅拷贝主要是对指针的拷贝,拷贝后两个指针指向同一个内存空间,深拷贝需要不但对指针进行拷贝,并对指针指向的内容进行拷贝,经过深拷贝后的指针是指向两个不同地址的指针。

参考文献 

CS231n Convolutional Neural Networks for Visual Recognition

NNDL实验 优化算法3D轨迹 鱼书例题3D版

 NNDL实验 优化算法3D轨迹 复现cs231经典动画

百度AI Studio课程_学习成就梦想,AI遇见未来_AI课程 - 百度AI Studio - 人工智能学习与实训社区 (baidu.com)

深拷贝和浅拷贝的区别 ​​​​​​​


推荐阅读
  • 本教程详细介绍了如何使用 TensorFlow 2.0 构建和训练多层感知机(MLP)网络,涵盖回归和分类任务。通过具体示例和代码实现,帮助初学者快速掌握 TensorFlow 的核心概念和操作。 ... [详细]
  • java文本编辑器,java文本编辑器设计思路
    java文本编辑器,java文本编辑器设计思路 ... [详细]
  • 利用决策树预测NBA比赛胜负的Python数据挖掘实践
    本文通过使用2013-14赛季NBA赛程与结果数据集以及2013年NBA排名数据,结合《Python数据挖掘入门与实践》一书中的方法,展示如何应用决策树算法进行比赛胜负预测。我们将详细讲解数据预处理、特征工程及模型评估等关键步骤。 ... [详细]
  • 二维几何变换矩阵解析
    本文详细介绍了二维平面上的三种常见几何变换:平移、缩放和旋转。通过引入齐次坐标系,使得这些变换可以通过统一的矩阵乘法实现,从而简化了计算过程。文中不仅提供了理论推导,还附有Python代码示例,帮助读者更好地理解这些概念。 ... [详细]
  • 深入理解Vue.js:从入门到精通
    本文详细介绍了Vue.js的基础知识、安装方法、核心概念及实战案例,帮助开发者全面掌握这一流行的前端框架。 ... [详细]
  • 本文介绍如何在Java中实现一个罗马数字计算器,重点在于如何通过循环和字符验证确保用户输入合法。我们将探讨创建一个方法来检查字符串中的非法字符,并使用循环不断提示用户输入,直到输入符合要求。 ... [详细]
  • 本文旨在探讨如何利用决策树算法实现对男女性别的分类。通过引入信息熵和信息增益的概念,结合具体的数据集,详细介绍了决策树的构建过程,并展示了其在实际应用中的效果。 ... [详细]
  • 本文将详细介绍Nose这一非标准库的Python测试框架,它虽然不是Python官方发行版的一部分,但与unittest框架紧密相关,旨在通过简化测试流程来提升开发效率。 ... [详细]
  • 对象自省自省在计算机编程领域里,是指在运行时判断一个对象的类型和能力。dir能够返回一个列表,列举了一个对象所拥有的属性和方法。my_list[ ... [详细]
  • 本文介绍如何使用 Angular 6 的 HttpClient 模块来获取 HTTP 响应头,包括代码示例和常见问题的解决方案。 ... [详细]
  • 实用正则表达式有哪些
    小编给大家分享一下实用正则表达式有哪些,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下 ... [详细]
  • 如何使用Ping命令来测试网络连接?当网卡安装和有关参数配置完成后,可以使用ping命令来测试一下网络是否连接成功。以winXP为例1、打开XP下DOS窗口具体操作是点击“开始”菜 ... [详细]
  • 本文介绍如何从字符串中移除大写、小写、特殊、数字和非数字字符,并提供了多种编程语言的实现示例。 ... [详细]
  • 本文探讨了如何在Hive(基于Hadoop)环境中编写类似SQL的语句,以去除字段中的空格。特别是在处理邮政编码等数据时,去除特定位置的空格是常见的需求。 ... [详细]
  • 一个登陆界面
    预览截图html部分123456789101112用户登入1314邮箱名称邮箱为空15密码密码为空16登 ... [详细]
author-avatar
violet
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有