热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

NLP比赛模型融合的思路

比赛模型融合思路1.就是先训练第一个模型然后冻结第一个模型然后训练两个模型,这种方法两个模型最好属于两个体系,一个CNN一个RNNtensorflo

比赛模型融合思路

1.就是先训练第一个模型然后冻结第一个模型然后训练两个模型,这种方法两个模型最好属于两个体系,一个CNN一个RNN

tensorflow模型冻结方法

2.训练多个模型,然后用模型的预测结果[0.1,0.9]表示第二类,多个模型的相加选取最高的作为结果。等权重融合,也可以根据准确率进行加权融合,也可以在结果上面再加一个GBDT再次进行分类。

别人总结思考

总结学习


推荐阅读
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • 本改进旨在提升运行选择器中名称换行的显示效果,以提高用户体验。 ... [详细]
  • 本文详细介绍了如何在Windows环境下配置GPU支持,并使用Keras和TensorFlow实现YOLOv3模型进行图像目标检测。对于环境搭建的具体步骤,可参考外部链接提供的指南。 ... [详细]
  • 本文详细介绍了使用NumPy和TensorFlow实现的逻辑回归算法。通过具体代码示例,解释了数据加载、模型训练及分类预测的过程。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 本文详细介绍如何通过Anaconda 3.5.01快速安装TensorFlow,包括环境配置和具体步骤。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 本文详细介绍了非极大值抑制(Non-Maximum Suppression, NMS)算法的原理及其在目标检测中的应用,并提供了C++语言的具体实现代码。NMS算法通过筛选出高得分的检测框并移除重叠度高的其他检测框,有效提高了检测结果的准确性和可靠性。 ... [详细]
  • 本文详细介绍了 TensorFlow 的入门实践,特别是使用 MNIST 数据集进行数字识别的项目。文章首先解析了项目文件结构,并解释了各部分的作用,随后逐步讲解了如何通过 TensorFlow 实现基本的神经网络模型。 ... [详细]
  • 本文介绍了一个使用Keras框架构建的卷积神经网络(CNN)实例,主要利用了Keras提供的MNIST数据集以及相关的层,如Dense、Dropout、Activation等,构建了一个具有两层卷积和两层全连接层的CNN模型。 ... [详细]
  • TensorFlow 2.0 中的 Keras 数据归一化实践
    数据预处理是机器学习任务中的关键步骤,特别是在深度学习领域。通过将数据归一化至特定范围,可以在梯度下降过程中实现更快的收敛速度和更高的模型性能。本文探讨了如何使用 TensorFlow 2.0 和 Keras 进行有效的数据归一化。 ... [详细]
  • 本文详细介绍了C++标准模板库(STL)中各容器的功能特性,并深入探讨了不同容器操作函数的异常安全性。 ... [详细]
  • TensorFlow核心函数解析与应用
    本文详细介绍了TensorFlow中几个常用的基础函数及其应用场景,包括常量创建、张量扩展以及二维卷积操作等,旨在帮助开发者更好地理解和使用这些功能。 ... [详细]
  • 本文探讨了如何在Python中处理长数据的完全显示问题,包括numpy数组、pandas DataFrame以及tensor类型的完整输出设置。 ... [详细]
author-avatar
幸福---wang
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有