热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Mysql大批量数据导入ElasticSearch

https:blog.csdn.netu013850277articledetails88904303?depth_1-utm_sourcedistribute.pc_releva

https://blog.csdn.net/u013850277/article/details/88904303?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task

注:笔者环境 ES6.6.2、linux centos6.9、mysql8.0、三个节点、节点内存64G、八核CPU
场景:

目前Mysql 数据库数据量约10亿,有几张大表1亿左右,直接在Mysql查询出现各种效率问题,因此想着将数据导一份到ES,从而实现大数据快速检索的功能。
通过Logstash插件批量导数据,个人感觉出现各种奇怪的问题,例如ES 内存暴满,mysql 所在服务器内存暴,最主要的是在一次导数时不能所导的数据量不能太大。经过一次次试探Logstash与优化Logstash导数的最后,终于还是动手直接运用ES提供的api进行导数了。
目前直接模拟测试批量导数据,无论是通过Logstash还是ES 提供的Api峰值均能达到10万每秒左右。下面上代码,主要是通过官网提供的api (RestHighLevelClient、BulkProcessor)整理而来。目前由于Mysql 查询出来的数据需要进行一些处理,基本可达到3.5万+每秒。这个速度还有不小的优化空间,比如笔者通过稍微修改下述代码,启动几个线程同时执行bulk多张表,从kibana界面看出速度达到了成倍的提升,因为速度已基本达到笔者所想要的,便不怎么进行优化代码了。
一、Maven 配置如下
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
4.0.0

ElasticSearchDemo
ElasticSearchDemo
0.0.1-SNAPSHOT
jar

ElasticSearchDemo
http://maven.apache.org


UTF-8



junit
junit
3.8.1
test


org.elasticsearch.client
elasticsearch-rest-high-level-client
6.6.2


mysql
mysql-connector-java
8.0.11


org.apache.logging.log4j
log4j-core
2.11.1


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
二、代码如下
package service;

import java.io.IOException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.concurrent.TimeUnit;
import java.util.function.BiConsumer;

import org.apache.http.HttpHost;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.elasticsearch.action.ActionListener;
import org.elasticsearch.action.admin.indices.create.CreateIndexRequest;
import org.elasticsearch.action.admin.indices.create.CreateIndexResponse;
import org.elasticsearch.action.bulk.BackoffPolicy;
import org.elasticsearch.action.bulk.BulkProcessor;
import org.elasticsearch.action.bulk.BulkRequest;
import org.elasticsearch.action.bulk.BulkResponse;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.unit.ByteSizeUnit;
import org.elasticsearch.common.unit.ByteSizeValue;
import org.elasticsearch.common.unit.TimeValue;

import utils.DBHelper;

/**
* @author Ye
* @time 2019年3月29日
*
* 类说明:通过BulkProcess批量将Mysql数据导入ElasticSearch中
*/

public class BulkProcessDemo {

private static final Logger logger = LogManager.getLogger(BulkProcessDemo.class);

public static void main(String[] args) {
try {
long startTime = System.currentTimeMillis();
String tableName = "testTable";
createIndex(tableName);
writeMysqlDataToES(tableName);

logger.info(" use time: " + (System.currentTimeMillis() - startTime) / 1000 + "s");
} catch (Exception e) {
logger.error(e.getMessage());
e.printStackTrace();
}
}

/**
* 创建索引
* @param indexName
* @throws IOException
*/
public static void createIndex(String indexName) throws IOException {
RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("es01", 9200, "http")));
// ES 索引默认需要小写,故笔者将其转为小写
CreateIndexRequest requestIndex = new CreateIndexRequest(indexName.toLowerCase());
// 注: 设置副本数为0,索引刷新时间为-1对大批量索引数据效率的提升有不小的帮助
requestIndex.settings(Settings.builder().put("index.number_of_shards", 5)
.put("index.number_of_replicas", 0)
.put("index.refresh_interval", "-1"));

// CreateIndexResponse createIndexRespOnse= client.indices().create(requestIndex, RequestOptions.DEFAULT);
client.close();
}

/**
* 将mysql 数据查出组装成es需要的map格式,通过批量写入es中
*
* @param tableName
*/
private static void writeMysqlDataToES(String tableName) {

RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("eshost", 9200, "http")));// 初始化
BulkProcessor bulkProcessor = getBulkProcessor(client);
Connection cOnn= null;
PreparedStatement ps = null;
ResultSet rs = null;

try {
cOnn= DBHelper.getConn();
logger.info("Start handle data :" + tableName);

String sql = "SELECT * from " + tableName;

ps = conn.prepareStatement(sql, ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY);
ps.setFetchSize(Integer.MIN_VALUE);
rs = ps.executeQuery();

ResultSetMetaData colData = rs.getMetaData();

ArrayList> dataList = new ArrayList>();

// bulkProcessor 添加的数据支持的方式并不多,查看其api发现其支持map键值对的方式,故笔者在此将查出来的数据转换成hashMap方式
HashMap map = null;
int count = 0;
String c = null;
String v = null;
while (rs.next()) {
count++;
map = new HashMap(128);
for (int i = 1; i <= colData.getColumnCount(); i++) {
c = colData.getColumnName(i);
v = rs.getString(c);
map.put(c, v);
}
dataList.add(map);
// 每10万条写一次,不足的批次的最后再一并提交
if (count % 100000 == 0) {
logger.info("Mysql handle data number : " + count);
// 将数据添加到 bulkProcessor 中
for (HashMap hashMap2 : dataList) {
bulkProcessor.add(new IndexRequest(tableName.toLowerCase(), "gzdc", hashMap2.get("S_GUID"))
.source(hashMap2));
}
// 每提交一次便将map与list清空
map.clear();
dataList.clear();
}
}

// count % 100000 处理未提交的数据
for (HashMap hashMap2 : dataList) {
bulkProcessor.add(
new IndexRequest(tableName.toLowerCase(), "gzdc", hashMap2.get("S_GUID")).source(hashMap2));
}

logger.info("-------------------------- Finally insert number total : " + count);
// 将数据刷新到es, 注意这一步执行后并不会立即生效,取决于bulkProcessor设置的刷新时间
bulkProcessor.flush();

} catch (Exception e) {
logger.error(e.getMessage());
} finally {
try {
rs.close();
ps.close();
conn.close();
boolean terminatedFlag = bulkProcessor.awaitClose(150L, TimeUnit.SECONDS);
client.close();
logger.info(terminatedFlag);
} catch (Exception e) {
logger.error(e.getMessage());
}
}
}

/**
* 创建bulkProcessor并初始化
* @param client
* @return
*/
private static BulkProcessor getBulkProcessor(RestHighLevelClient client) {

BulkProcessor bulkProcessor = null;
try {

BulkProcessor.Listener listener = new BulkProcessor.Listener() {
@Override
public void beforeBulk(long executionId, BulkRequest request) {
logger.info("Try to insert data number : " + request.numberOfActions());
}

@Override
public void afterBulk(long executionId, BulkRequest request, BulkResponse response) {
logger.info("************** Success insert data number : " + request.numberOfActions() + " , id: "
+ executionId);
}

@Override
public void afterBulk(long executionId, BulkRequest request, Throwable failure) {
logger.error("Bulk is unsuccess : " + failure + ", executionId: " + executionId);
}
};

BiConsumer> bulkCOnsumer= (request, bulkListener) -> client
.bulkAsync(request, RequestOptions.DEFAULT, bulkListener);

// bulkProcessor = BulkProcessor.builder(bulkConsumer, listener).build();
BulkProcessor.Builder builder = BulkProcessor.builder(bulkConsumer, listener);
builder.setBulkActions(5000);
builder.setBulkSize(new ByteSizeValue(100L, ByteSizeUnit.MB));
builder.setConcurrentRequests(10);
builder.setFlushInterval(TimeValue.timeValueSeconds(100L));
builder.setBackoffPolicy(BackoffPolicy.constantBackoff(TimeValue.timeValueSeconds(1L), 3));
// 注意点:在这里感觉有点坑,官网样例并没有这一步,而笔者因一时粗心也没注意,在调试时注意看才发现,上面对builder设置的属性没有生效
bulkProcessor = builder.build();

} catch (Exception e) {
e.printStackTrace();
try {
bulkProcessor.awaitClose(100L, TimeUnit.SECONDS);
client.close();
} catch (Exception e1) {
logger.error(e1.getMessage());
}
}
return bulkProcessor;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
数据库连接类

package utils;

import java.sql.Connection;
import java.sql.DriverManager;

public class DBHelper {

public static final String url = "jdbc:mysql://xx.xx.xx.xx:3306/xxdemo?useSSL=true";
public static final String name = "com.mysql.cj.jdbc.Driver";
public static final String user = "xxx";
public static final String password = "xxxx";

public static Connection cOnn= null;

public static Connection getConn() {
try {
Class.forName(name);
cOnn= DriverManager.getConnection(url, user, password);//获取连接
} catch (Exception e) {
e.printStackTrace();
}
return conn;
}
}


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
日志文件配置文件:log4j2.properties

property.filePath=logs
property.filePattern=logs/%d{yyyy}/%d{MM}
#\u8F93\u51FA\u683C\u5F0F
property.layoutPattern=%-d{yyyy-MM-dd HH:mm:ss SSS} [ %p ] [ %c ] %m%n
rootLogger.level = info


appender.console.type = Console
appender.console.name = STDOUT
appender.console.target = SYSTEM_OUT
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = ${layoutPattern}
rootLogger.appenderRef.stdout.ref = STDOUT

appender.I.type = RollingFile
appender.I.name = InfoRollingFile
appender.I.fileName = ${filePath}/es-info.log
appender.I.filePattern = ${filePattern}/es_info.log
appender.I.layout.type = PatternLayout
appender.I.layout.pattern = ${layoutPattern}
appender.I.policies.type = Policies
appender.I.policies.time.type = TimeBasedTriggeringPolicy
appender.I.policies.time.interval = 1
appender.I.policies.time.modulate = true
appender.I.policies.size.type = SizeBasedTriggeringPolicy
appender.I.policies.size.size=20M
appender.I.strategy.type = DefaultRolloverStrategy
appender.I.strategy.max = 100
#\u8FC7\u6EE4INFO\u4EE5\u4E0A\u4FE1\u606F
appender.I.filter.threshold.type = ThresholdFilter
appender.I.filter.threshold.level = WARN
appender.I.filter.threshold.OnMatch= DENY
appender.I.filter.threshold.OnMisMatch=NEUTRAL

rootLogger.appenderRef.I.ref = InfoRollingFile
rootLogger.appenderRef.I.level=INFO


appender.E.type = RollingFile
appender.E.name = ErrorRollingFile
appender.E.fileName = ${filePath}/es-error.log
appender.E.filePattern = ${filePattern}/es_error.log
appender.E.layout.type = PatternLayout
appender.E.layout.pattern = ${layoutPattern}
appender.E.policies.type = Policies
appender.E.policies.time.type = TimeBasedTriggeringPolicy
appender.E.policies.time.interval = 1
appender.E.policies.time.modulate = true
appender.E.policies.size.type = SizeBasedTriggeringPolicy
appender.E.policies.size.size=20M
appender.E.strategy.type = DefaultRolloverStrategy
appender.E.strategy.max = 100
#\u8FC7\u6EE4ERROR\u4EE5\u4E0A\u4FE1\u606F
appender.E.filter.threshold.type = ThresholdFilter
appender.E.filter.threshold.level = FATAL
appender.E.filter.threshold.OnMatch= DENY
appender.E.filter.threshold.OnMisMatch=NEUTRAL

rootLogger.appenderRef.E.ref = ErrorRollingFile
rootLogger.appenderRef.E.level=ERROR

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
核心代码解说:

三、验证上述代码结果
1、起初笔者直接在本地Eclipse中运行,由于电脑配置所限制,写入es 速度只能达到5000/s左右的样子。

2、直接将代码打包成可运行的jar,通过java -jar xxx.jar 方式在linux中运行,基本可以达到2.5万/s,结果如下图所示:

注:笔者下图是将一张具有5400万的数据,一次性导入ES,该表60多个字段

运行的部分日志如下:
2019-03-29 17:31:34 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2679
2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Mysql handle data number : 13500000
2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2681
2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2683
2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2682
2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2685
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2686
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2687
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2684
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2688
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2689
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2691
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2693
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2692
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2690
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2696
2019-03-29 17:31:38 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2694
2019-03-29 17:31:38 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2695
2019-03-29 17:31:38 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2697
2019-03-29 17:31:38 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2698
2019-03-29 17:31:38 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2699
2019-03-29 17:31:38 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2700
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
简单修改下相应参数进行bulk,查看效率
修改下每个批次上传 10000条数据,setBulkSize 设置成300M,数据处理批次修改成20万(if (count % 200000 == 0) ),其它配置一样,处理另一张大表,效果如下:
该表数据量:该表27个字段
SELECT count(1) from xxxxxxxxx; – 171769567

全量bulk进es用时:5113s
2019-04-01 11:39:04.453 INFO 28080 — [nio-8080-exec-1] s.ElasticServiceImpl : use time: 5113s

es 监控如下图

 

四、小结
笔者个人不深入的学习感觉 Logstash 对于这种需要一次性大批量将数据导入ES的需求适应性可能不太好。
大批量的数据导入ES 个人推荐BulkProcessor, 不论是什么数据,只需要将其转换成Map键值对的格式便可运用bulkProcessor实现流式导入。
对于导入效率需要看集群的环境以及导入批次的设置,还有ES的相关优化配置。
五、遇到的小坑
问题一
由于表数据量太大,一开始本想以时间段(原数据库中有时间相关的字段)分批查出数据再将其导入ES(在用Logstash插件导入时就是这么处理的,但由于数据在不同时间的分布情况很不一样,在运用Logstash插件导入时经常因为某一时间段数据量太大而导致死机问题)。
解决:JDBC resltset中fetchSize的设置。
详见:[正确使用MySQL JDBC setFetchSize()方法解决JDBC处理大结果集内在溢出]

问题二
通过官网提供的代码设置了bulder 相关的属性,比如每个批次提交多少数据,但程序运行起来发现这些设置并没有生效。
官网代码如下:
BulkProcessor bulkProcessor =
BulkProcessor.builder(bulkConsumer, listener).build();
BiConsumer> bulkCOnsumer=
(request, bulkListener) ->
client.bulkAsync(request, RequestOptions.DEFAULT, bulkListener);
BulkProcessor.Builder builder =
BulkProcessor.builder(bulkConsumer, listener);
builder.setBulkActions(500);
builder.setBulkSize(new ByteSizeValue(1L, ByteSizeUnit.MB));
builder.setConcurrentRequests(0);
builder.setFlushInterval(TimeValue.timeValueSeconds(10L));
builder.setBackoffPolicy(BackoffPolicy
.constantBackoff(TimeValue.timeValueSeconds(1L), 3));
1
2
3
4
5
6
7
8
9
10
11
12
13
解决:其实该坑的出现主要是笔者个人在此太粗心了,还有就是太相信官网了。
在这个问题上稍微留意下上述代码就可以看出 builder 虽然设置了,但并没有将其设置后的值转给那个类调用了,因此bulkProcessor还是使用了默认的配置。

BulkProcessor bulkProcessor =
BulkProcessor.builder(bulkConsumer, listener).build();
其实这一步可以换成如下(该bulkProcessor 的创建应在builder 属性设置完成之后)
BulkProcessor bulkProcessor = builder.build();

# 完整代码如下:
BulkProcessor.Builder builder = BulkProcessor.builder(bulkConsumer, listener);
builder.setBulkActions(5000);
builder.setBulkSize(new ByteSizeValue(100L, ByteSizeUnit.MB));
builder.setConcurrentRequests(10);
builder.setFlushInterval(TimeValue.timeValueSeconds(100L));
builder.setBackoffPolicy(BackoffPolicy.constantBackoff(TimeValue.timeValueSeconds(1L), 3));
bulkProcessor = builder.build();
1
2
3
4
5
6
7
8
9
10
11
12
13
在这里可能会感觉如何将bulkProcessor 转给监听者(listener),查看builder.build(); 瞄了下底层会发现其实该方法最终是调用如下方法的:

/**
* Builds a new bulk processor.
*/
public BulkProcessor build() {
return new BulkProcessor(consumer, backoffPolicy, listener, concurrentRequests, bulkActions,
bulkSize, flushInterval, scheduler, onClose, createBulkRequestWithGlobalDefaults());
}
1
2
3
4
5
6
7
完整代码见:https://github.com/yechunbo/BigdataSearchPro.git

参考文档:

https://www.elastic.co/guide/en/elasticsearch/client/java-rest/6.6/java-rest-high-document-bulk.html
https://www.elastic.co/guide/en/elasticsearch/client/java-api/6.6/_log4j_2_logger.html
https://docs.oracle.com/cd/E11882_01/java.112/e16548/resltset.htm#JJDBC28622
正确使用MySQL JDBC setFetchSize()方法解决JDBC处理大结果集内在溢出
JDBC读取数据优化-fetch size
————————————————
版权声明:本文为CSDN博主「在屋顶听歌」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/u013850277/article/details/88904303


推荐阅读
  • 【实例简介】本文详细介绍了如何在PHP中实现微信支付的退款功能,并提供了订单创建类的完整代码及调用示例。在配置过程中,需确保正确设置相关参数,特别是证书路径应根据项目实际情况进行调整。为了保证系统的安全性,存放证书的目录需要设置为可读权限。值得注意的是,普通支付操作无需证书,但在执行退款操作时必须提供证书。此外,本文还对常见的错误处理和调试技巧进行了说明,帮助开发者快速定位和解决问题。 ... [详细]
  • 基于Net Core 3.0与Web API的前后端分离开发:Vue.js在前端的应用
    本文介绍了如何使用Net Core 3.0和Web API进行前后端分离开发,并重点探讨了Vue.js在前端的应用。后端采用MySQL数据库和EF Core框架进行数据操作,开发环境为Windows 10和Visual Studio 2019,MySQL服务器版本为8.0.16。文章详细描述了API项目的创建过程、启动步骤以及必要的插件安装,为开发者提供了一套完整的开发指南。 ... [详细]
  • Java Socket 关键参数详解与优化建议
    Java Socket 的 API 虽然被广泛使用,但其关键参数的用途却鲜为人知。本文详细解析了 Java Socket 中的重要参数,如 backlog 参数,它用于控制服务器等待连接请求的队列长度。此外,还探讨了其他参数如 SO_TIMEOUT、SO_REUSEADDR 等的配置方法及其对性能的影响,并提供了优化建议,帮助开发者提升网络通信的稳定性和效率。 ... [详细]
  • 优化后的标题:深入探讨网关安全:将微服务升级为OAuth2资源服务器的最佳实践
    本文深入探讨了如何将微服务升级为OAuth2资源服务器,以订单服务为例,详细介绍了在POM文件中添加 `spring-cloud-starter-oauth2` 依赖,并配置Spring Security以实现对微服务的保护。通过这一过程,不仅增强了系统的安全性,还提高了资源访问的可控性和灵活性。文章还讨论了最佳实践,包括如何配置OAuth2客户端和资源服务器,以及如何处理常见的安全问题和错误。 ... [详细]
  • Redis 脑裂现象及其应对策略
    本文探讨了 Redis 集群中的脑裂现象及其解决方案,包括脑裂的成因、影响以及如何通过配置项防止脑裂的发生。 ... [详细]
  • 微软推出Windows Terminal Preview v0.10
    微软近期发布了Windows Terminal Preview v0.10,用户可以在微软商店或GitHub上获取这一更新。该版本在2月份发布的v0.9基础上,新增了鼠标输入和复制Pane等功能。 ... [详细]
  • 在 Ubuntu 中遇到 Samba 服务器故障时,尝试卸载并重新安装 Samba 发现配置文件未重新生成。本文介绍了解决该问题的方法。 ... [详细]
  • 秒建一个后台管理系统?用这5个开源免费的Java项目就够了
    秒建一个后台管理系统?用这5个开源免费的Java项目就够了 ... [详细]
  • 基于Web的Kafka管理工具Kafkamanager首次访问Web界面的详细配置指南(附图解)
    首次访问Kafkamanager Web界面时,需要对Kafka集群进行配置。这一过程相对简单,用户只需依次点击【Cluster】>【Add Cluster】,按照提示完成相关设置即可。本文将通过图文并茂的方式,详细介绍每一步的配置步骤,帮助用户快速上手Kafkamanager。 ... [详细]
  • Android 构建基础流程详解
    Android 构建基础流程详解 ... [详细]
  • 如何在PHP中准确获取服务器IP地址?
    如何在PHP中准确获取服务器IP地址? ... [详细]
  • Ansible:自动化运维工具详解
    Ansible 是一款新兴的自动化运维工具,基于 Python 开发,集成了多种运维工具(如 Puppet、CFEngine、Chef、Func 和 Fabric)的优点,实现了批量系统配置、程序部署和命令执行等功能。本文将详细介绍 Ansible 的架构、特性和优势。 ... [详细]
  • Shell脚本编译器的全面解析与应用指南 ... [详细]
  • 在Linux系统中避免安装MySQL的简易指南
    在Linux系统中避免安装MySQL的简易指南 ... [详细]
  • 利用 Python Socket 实现 ICMP 协议下的网络通信
    在计算机网络课程的2.1实验中,学生需要通过Python Socket编程实现一种基于ICMP协议的网络通信功能。与操作系统自带的Ping命令类似,该实验要求学生开发一个简化的、非标准的ICMP通信程序,以加深对ICMP协议及其在网络通信中的应用的理解。通过这一实验,学生将掌握如何使用Python Socket库来构建和解析ICMP数据包,并实现基本的网络探测功能。 ... [详细]
author-avatar
你看看我的世界_420
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有