MySQL统计函数记录——数值函数可使用常见的算术操作符。注意就-、+和*而言,若两个参数均为正数,则其计算结果的精确度为BIGINT(64比特),若其中一个参数为无符号整数,而其它参数也是整数,则结...SyntaxHighlighter.all();
MySQL统计函数记录——数值函数
可使用常见的算术操作符。注意就 -、 +和 *而言, 若两个参数均为正数,则其计算结果的精确度为 BIGINT (64比特),若其中一个参数为无符号整数, 而其它参数也是整数, 则结果为无符号整数。请参见12.8节,“Cast函数和操作符”。 www.2cto.com
+
加号:
-> 8
-
减号:
mysql> SELECT 3-5;
-> -2
-
一元减号。更换参数符号。
mysql> SELECT - 2;
-> -2
注意:若该 操作符同一个BIGINT同时使用,则返回值也是一个BIGINT。这意味着你应当尽量避免对可能产生–263的整数使用 –。
*
乘号:
mysql> SELECT 3*5;
-> 15
mysql> SELECT 18014398509481984*18014398509481984.0;
-> 324518553658426726783156020576256.0
mysql> SELECT 18014398509481984*18014398509481984;
-> 0
最后一个表达式的结果是不正确的。原因是整数相乘的结果超过了BIGINT 计算的 64比特范围。 (见11.2节,“数值类型”.)
/
除号:
mysql> SELECT 3/5;
-> 0.60
被零除的结果为 NULL:
mysql> SELECT 102/(1-1);
-> NULL
只有当执行的语境中,其结果要被转化为一个整数时 ,除法才会和 BIGINT 算法一起使用。
DIV
整数除法。 类似于 FLOOR(),然而使用BIGINT 算法也是可靠的。
mysql> SELECT 5 DIV 2;
-> 2
12.4.2. 数学函数
若发生错误,所有数学函数会返回 NULL 。
ABS(X)
返回X 的绝对值。
mysql> SELECT ABS(2);
-> 2
mysql> SELECT ABS(-32);
-> 32
该函数支持使用BIGINT值。
ACOS(X)
返回X 反余弦, 即, 余弦是X的值。若X 不在-1到 1的范围之内,则返回 NULL 。
mysql> SELECT ACOS(1);
-> 0
mysql> SELECT ACOS(1.0001);
-> NULL
mysql> SELECT ACOS(0);
-> 1.5707963267949
ASIN(X)
返回X 的反正弦,即,正弦为X 的值。若X 若X 不在-1到 1的范围之内,则返回 NULL 。
mysql> SELECT ASIN(0.2);
-> 0.20135792079033
mysql> SELECT ASIN('foo');
+-------------+
| ASIN('foo') |
+-------------+
| 0 |
+-------------+
1 row in set, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+---------+------+-----------------------------------------+
| Level | Code | Message |
+---------+------+-----------------------------------------+
| Warning | 1292 | Truncated incorrect DOUBLE value: 'foo' |
+---------+------+-----------------------------------------+
ATAN(X)
返回X 的反正切,即,正切为X 的值。
mysql> SELECT ATAN(2);
-> 1.1071487177941
mysql> SELECT ATAN(-2);
-> -1.1071487177941
ATAN(Y,X) , ATAN2(Y,X)
返回两个变量X 及Y的反正切。 它类似于 Y 或 X的反正切计算, 除非两个参数的符号均用于确定结果所在象限。
mysql> SELECT ATAN(-2,2);
-> -0.78539816339745
mysql> SELECT ATAN2(PI(),0);
-> 1.5707963267949
CEILING(X) CEIL(X)
返回不小于X 的最小整数值。
mysql> SELECT CEILING(1.23);
-> 2
mysql> SELECT CEIL(-1.23);
-> -1
这两个函数的意义相同。注意返回值会被转化为一个BIGINT。
COS(X)
返回X 的余弦,其中X在弧度上已知。
mysql> SELECT COS(PI());
-> -1
COT(X)
返回X 的余切。
mysql> SELECT COT(12);
-> -1.5726734063977
mysql> SELECT COT(0);
-> NULL
CRC32(expr)
计算循环冗余码校验值并返回一个 32比特无符号值。若参数为NULL ,则结果为 NULL。该参数应为一个字符串,而且在不是字符串的情况下会被作为字符串处理(若有可能)。
mysql> SELECT CRC32('MySQL');
-> 3259397556
mysql> SELECT CRC32('mysql');
-> 2501908538
DEGREES(X)
返回参数 X, 该参数由弧度被转化为度。
mysql> SELECT DEGREES(PI());
-> 180
mysql> SELECT DEGREES(PI() / 2);
-> 90
EXP(X)
返回e的X乘方后的值(自然对数的底)。
mysql> SELECT EXP(2);
-> 7.3890560989307
mysql> SELECT EXP(-2);
-> 0.13533528323661
mysql> SELECT EXP(0);
-> 1
FLOOR(X)
返回不大于X的最大整数值 。
mysql> SELECT FLOOR(1.23);
-> 1
mysql> SELECT FLOOR(-1.23);
-> -2
注意,返回值会被转化为一个 BIGINT。
FORMAT(X,D)
将数字X 的格式写成'#,###,###.##'格式, 即保留小数点后 D位,而第D位的保留方式为四舍五入,然后将结果以字符串的形式返回。详见12.9.4节,“其他函数”。
LN(X)
返回X 的自然对数,即, X 相对于基数e 的对数。
mysql> SELECT LN(2);
-> 0.69314718055995
mysql> SELECT LN(-2);
-> NULL
这个函数同LOG(X)具有相同意义。
LOG(X) LOG(B,X)
若用一个参数调用,这个函数就会返回X 的自然对数。
mysql> SELECT LOG(2);
-> 0.69314718055995
mysql> SELECT LOG(-2);
-> NULL
若用两个参数进行调用,这个函数会返回X 对于任意基数B 的对数。
mysql> SELECT LOG(2,65536);
-> 16
mysql> SELECT LOG(10,100);
-> 2
LOG(B,X) 就相当于 LOG(X) / LOG(B)。
LOG2(X)
返回X 的基数为2的对数。
mysql> SELECT LOG2(65536);
-> 16
mysql> SELECT LOG2(-100);
-> NULL
对于查出存储一个数字需要多少个比特,LOG2()非常有效。这个函数相当于表达式 LOG(X) / LOG(2)。
LOG10(X)
返回X的基数为10的对数。
mysql> SELECT LOG10(2);
-> 0.30102999566398
mysql> SELECT LOG10(100);
-> 2
mysql> SELECT LOG10(-100);
-> NULL
LOG10(X)相当于LOG(10,X)。
MOD(N,M) , N % M N MOD M
模操作。返回N 被 M除后的余数。
mysql> SELECT MOD(234, 10);
-> 4
mysql> SELECT 253 % 7;
-> 1
mysql> SELECT MOD(29,9);
-> 2
mysql> SELECT 29 MOD 9;
-> 2
这个函数支持使用BIGINT 值。
MOD() 对于带有小数部分的数值也起作用, 它返回除法运算后的精确余数:
mysql> SELECT MOD(34.5,3);
-> 1.5
PI()
返回 ? (pi)的值。默认的显示小数位数是7位,然而 MySQL内部会使用完全双精度值。
mysql> SELECT PI();
-> 3.141593
mysql> SELECT PI()+0.000000000000000000;
-> 3.141592653589793116
POW(X,Y) , POWER(X,Y)
返回X 的Y乘方的结果值。
mysql> SELECT POW(2,2);
-> 4
mysql> SELECT POW(2,-2);
-> 0.25
RADIANS(X)
返回由度转化为弧度的参数 X, (注意 ? 弧度等于180度)。
mysql> SELECT RADIANS(90);
-> 1.5707963267949
RAND() RAND(N)
返回一个随机浮点值 v ,范围在 0 到1 之间 (即, 其范围为 0 ≤ v ≤ 1.0)。若已指定一个整数参数 N ,则它被用作种子值,用来产生重复序列。
mysql> SELECT RAND();
-> 0.9233482386203
mysql> SELECT RAND(20);
-> 0.15888261251047
mysql> SELECT RAND(20);
-> 0.15888261251047
mysql> SELECT RAND();
-> 0.63553050033332
mysql> SELECT RAND();
-> 0.70100469486881
mysql> SELECT RAND(20);
-> 0.15888261251047
若要在i ≤ R ≤ j 这个范围得到一个随机整数R ,需要用到表达式 FLOOR(i + RAND() * (j – i + 1))。例如, 若要在7 到 12 的范围(包括7和12)内得到一个随机整数, 可使用以下语句:
SELECT FLOOR(7 + (RAND() * 6));
在ORDER BY语句中,不能使用一个带有RAND()值的列,原因是 ORDER BY 会计算列的多重时间。然而,可按照如下的随机顺序检索数据行:
mysql> SELECT * FROM tbl_name ORDER BY RAND();
ORDER BY RAND()同 LIMIT 的结合从一组列中选择随机样本很有用:
mysql> SELECT * FROM table1, table2 WHERE a=b AND c
-> ORDER BY RAND() LIMIT 1000;
注意,在WHERE语句中,WHERE每执行一次, RAND()就会被再计算一次。
RAND()的作用不是作为一个精确的随机发生器,而是一种用来发生在同样的 MySQL版本的平台之间的可移动ad hoc随机数的快速方式。
ROUND(X) ROUND(X,D)
返回参数X, 其值接近于最近似的整数。在有两个参数的情况下,返回 X ,其值保留到小数点后D位,而第D位的保留方式为四舍五入。若要接保留X值小数点左边的D 位,可将 D 设为负值。
mysql> SELECT ROUND(-1.23);
-> -1
mysql> SELECT ROUND(-1.58);
-> -2
mysql> SELECT ROUND(1.58);
-> 2
mysql> SELECT ROUND(1.298, 1);
-> 1.3
mysql> SELECT ROUND(1.298, 0);
-> 1
mysql> SELECT ROUND(23.298, -1);
-> 20
返回值的类型同 第一个自变量相同(假设它是一个整数、双精度数或小数)。这意味着对于一个整数参数,结果也是一个整数(无小数部分)。
当第一个参数是十进制常数时,对于准确值参数,ROUND() 使用精密数学题库:
对于准确值数字, ROUND() 使用“四舍五入” 或“舍入成最接近的数” 的规则:对于一个分数部分为 .5或大于 .5的值,正数则上舍入到邻近的整数值, 负数则下舍入临近的整数值。(换言之, 其舍入的方向是数轴上远离零的方向)。对于一个分数部分小于.5 的值,正数则下舍入下一个整数值,负数则下舍入邻近的整数值,而正数则上舍入邻近的整数值。
对于近似值数字,其结果根据C 库而定。在很多
系统中,这意味着 ROUND()的使用遵循“舍入成最接近的偶数”的规则: 一个带有任何小数部分的值会被舍入成最接近的偶数整数。
以下举例说明舍入法对于精确值和近似值的不同之处:
mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3 | 2 |
+------------+--------------+
详见第24章:精度数学。
SIGN(X)
返回参数作为-1、 0或1的符号,该符号取决于X 的值为负、零或正。
mysql> SELECT SIGN(-32);
-> -1
mysql> SELECT SIGN(0);
-> 0
mysql> SELECT SIGN(234);
-> 1
SIN(X)
返回X 正弦,其中 X 在弧度中被给定。
mysql> SELECT SIN(PI());
-> 1.2246063538224e-16
mysql> SELECT ROUND(SIN(PI()));
-> 0
SQRT(X)
返回非负数X 的二次方根。
mysql> SELECT SQRT(4);
-> 2
mysql> SELECT SQRT(20);
-> 4.4721359549996
mysql> SELECT SQRT(-16);
-> NULL
TAN(X)
返回X 的正切,其中X 在弧度中被给定。
mysql> SELECT TAN(PI());
-> -1.2246063538224e-16
mysql> SELECT TAN(PI()+1);
-> 1.5574077246549
TRUNCATE(X,D)
返回被舍去至小数点后D位的数字X。若D 的值为 0, 则结果不带有小数点或不带有小数部分。可以将D设为负数,若要截去(归零) X小数点左起第D位开始后面所有低位的值.
mysql> SELECT TRUNCATE(1.223,1);
-> 1.2
mysql> SELECT TRUNCATE(1.999,1);
-> 1.9
mysql> SELECT TRUNCATE(1.999,0);
-> 1
mysql> SELECT TRUNCATE(-1.999,1);
-> -1.9
mysql> SELECT TRUNCATE(122,-2);
-> 100
mysql> SELECT TRUNCATE(10.28*100,0);
-> 1028
所有数字的舍入方向都接近于零
推荐阅读
-
本文详细介绍如何使用MySQL数据库进行环境搭建,包括创建数据库表并插入示例数据。随后,逐步指导如何配置Maven项目,整合Spring框架与MyBatis,实现高效的数据访问。 ...
[详细]
蜡笔小新 2024-11-21 18:39:23
-
本文深入探讨了软件测试行业的发展现状及未来趋势,旨在帮助有志于在该领域取得高薪的技术人员明确职业方向和发展路径。 ...
[详细]
蜡笔小新 2024-11-21 17:32:44
-
-
我的读书清单(持续更新)201705311.《一千零一夜》2006(四五年级)2.《中华上下五千年》2008(初一)3.《鲁滨孙漂流记》2008(初二)4.《钢铁是怎样炼成的》20 ...
[详细]
蜡笔小新 2024-11-21 13:01:23
-
本文深入探讨了MySQL InnoDB存储引擎中的索引技术,包括索引的基本概念、数据结构与算法、B+树的特性及其在数据库中的应用,以及索引优化策略。 ...
[详细]
蜡笔小新 2024-11-21 12:41:51
-
由雷锋网旗下的AI研习社主办,旨在促进AI领域的知识共享和技术交流。通过邀请来自学术界和工业界的专家进行在线分享,活动致力于搭建一个连接理论与实践的平台。 ...
[详细]
蜡笔小新 2024-11-21 17:13:10
-
本题要求实现一个名为fun的函数,该函数的功能是从给定的字符串s中移除所有ASCII码为偶数值的字符,并将剩下的字符组成的新字符串存储在由t指向的数组中。 ...
[详细]
蜡笔小新 2024-11-21 16:07:25
-
本文详细介绍了融慧金科AI Lab负责人张凯博士在2020爱分析·中国人工智能高峰论坛上的演讲,探讨了知识图谱与图神经网络模型如何在金融科技领域发挥重要作用。 ...
[详细]
蜡笔小新 2024-11-21 15:02:52
-
本文介绍了如何使用Python及其相关库(如NumPy、scikit-learn和matplotlib)构建KNN分类器模型。通过详细的数据准备、模型训练及新样本预测的过程,展示KNN算法的实际操作步骤。 ...
[详细]
蜡笔小新 2024-11-21 11:40:55
-
龙蜥社区的开发者们通过自己的实践和经验,推动着开源技术的发展。本期「龙蜥开发者说」聚焦于一位资深开发者的三次技术转型,分享他在龙蜥社区的成长故事。 ...
[详细]
蜡笔小新 2024-11-21 11:12:28
-
Go从入门到精通系列视频之go编程语言密码学哈希算法(二) ...
[详细]
蜡笔小新 2024-11-21 10:55:36
-
为助力科研人员提升数据处理与图形展示能力,活动家携手北京市计算中心推出2017年R语言数据可视化研讨会。详情及注册信息请点击链接查看。 ...
[详细]
蜡笔小新 2024-11-21 08:07:08
-
本文详细介绍了在 Ubuntu 16.04 系统上安装和配置 PostgreSQL 数据库的方法,包括如何设置监听地址、启用密码加密、更改默认用户密码以及调整客户端访问控制。 ...
[详细]
蜡笔小新 2024-11-20 22:17:50
-
本文介绍如何在OpenCV 3.1.0版本中通过Python 2.7环境使用SIFT和SURF算法进行图像特征点检测。由于这些高级功能在OpenCV 3.0.0及更高版本中被移至额外的contrib模块,因此需要特别处理才能正常使用。 ...
[详细]
蜡笔小新 2024-11-20 21:00:18
-
本文深入探讨了张正友教授于1998年提出的单平面标定技术,该方法结合了传统标定与自标定的优势,通过简易的棋盘格实现了高效准确的相机标定。 ...
[详细]
蜡笔小新 2024-11-20 20:30:52
-
本文介绍了一种方法,通过 MATLAB 将高光谱数据集的每个维度的图像转换为伪彩色 CIE 图像。用户只需指定波段即可完成转换。 ...
[详细]
蜡笔小新 2024-11-20 19:59:28
-
ReMadrism_FaithlU9D_1990
这个家伙很懒,什么也没留下!