热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

目标检测论文解读复现之三:基于改进YOLOv7的X光图像旋转目标检测

目标检测论文解读复现文章目录目标检测论文解读复现前言一、摘要二、网络模型及核心创新点三、应用数据集四、实验效果五、实验结论六、投稿期刊介绍前言此前出了目标改进算法专栏࿰




目标检测论文解读复现

文章目录


  • 目标检测论文解读复现
  • 前言
  • 一、摘要
  • 二、网络模型及核心创新点
  • 三、应用数据集
  • 四、实验效果
  • 五、实验结论
  • 六、投稿期刊介绍





前言

此前出了目标改进算法专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读最新目标检测算法论文,帮助大家解答疑惑。解读的系列文章,本人已进行创新点代码复现,有需要的朋友可关注私信我。


一、摘要

针对X光图像违禁品目标检测中存在的识别定位困难以及忽略物品方向性的问题,提出了一种基于改进YOLOv7的X光图像旋转目标检测算法。首先,通过在原网络中融合高效注意力机制模块提高模型对深层重要特征的提取能力;然后,改进扩展的高效长程注意力机制的特征融合路径,在模块之间增加跳跃连接和1×1卷积架构,使网络提取更丰富的物品特征;最后,针对X光图像中违禁品放置方向任意的问题,使用密集编码标签表示法对角度进行离散化处理,提高违禁品定位的准确性。实验结果表明,改进的算法在HiXray、OPIXray、PIDray数据集上分别取得了91.2%、92.6%、66.4%的检测精度,较原YOLOv7模型分别提高了20.2%、10.6%、15.5%,在有效提高X光图像违禁品检测的精度的基础上,为保障公共安全提供了很好的技术支持。


二、网络模型及核心创新点

1.通过在原网络中融合高效注意力机制模块提高模型对深层重要特征的提取能力;
2.改进扩展的高效长程注意力机制的特征融合路径,在模块之间增加跳跃连接和1×1卷积架构,使网络提取更丰富的物品特征;
3.针对X光图像中违禁品放置方向任意的问题,使用密集编码标签表示法对角度进行离散化处理,提高违禁品定位的准确性。

在这里插入图片描述


三、应用数据集

为了评估改进后的YOLOv7-E6R算法的违禁品检测性能,本实验在HiXray违禁品数据集上进行训练和测试。同时为了评估该算法的通用性能,本实验还增加了在复杂违禁品数据集OPIXray和PIDray上进行训练和测试。


四、实验效果

本实验将改进后的YOLOv7-E6R算法分别与目前主流的旋转目标检测算法和水平目标检测算法在违禁品数据集HiXray、OPIXray、PIDray进行了违禁品检测性能对比,实验对比结果见表:
在这里插入图片描述
在这里插入图片描述


五、实验结论

实验结果表明,在未明显增加模型参数量和计算量情况下,有效地提高了违禁品检测精度。因此,本文所提算法能够很好的完成X光图像违禁品定位识别任务。同时此改进算法可以作为一种通用的旋转目标检测模型,应用到遥感图像目标检测、航拍图像目标检测、场景文本检测等场景。


六、投稿期刊介绍

在这里插入图片描述

**注:论文原文出自成浪,敬超.基于改进YOLOv7的X光图像旋转目标检测[J/OL].图学学报.
(1. 桂林理工大学信息科学与工程学院,广西 桂林 541004; 2. 桂林理工大学嵌入式技术与智能系统重点实验室,广西 桂林 541004;
3. 桂林电子科技大学可信软件重点实验室,广西 桂林 541004)

解读的系列文章,本人已进行创新点代码复现,有需要的朋友可关注下面公众号,私信我。







推荐阅读
  • 深入解析 Apache Shiro 安全框架架构
    本文详细介绍了 Apache Shiro,一个强大且灵活的开源安全框架。Shiro 专注于简化身份验证、授权、会话管理和加密等复杂的安全操作,使开发者能够更轻松地保护应用程序。其核心目标是提供易于使用和理解的API,同时确保高度的安全性和灵活性。 ... [详细]
  • 2023年京东Android面试真题解析与经验分享
    本文由一位拥有6年Android开发经验的工程师撰写,详细解析了京东面试中常见的技术问题。涵盖引用传递、Handler机制、ListView优化、多线程控制及ANR处理等核心知识点。 ... [详细]
  • 从 .NET 转 Java 的自学之路:IO 流基础篇
    本文详细介绍了 Java 中的 IO 流,包括字节流和字符流的基本概念及其操作方式。探讨了如何处理不同类型的文件数据,并结合编码机制确保字符数据的正确读写。同时,文中还涵盖了装饰设计模式的应用,以及多种常见的 IO 操作实例。 ... [详细]
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • 汇编语言等号伪指令解析:探究其陡峭的学习曲线
    汇编语言以其独特的特性和复杂的语法结构,一直被认为是编程领域中学习难度较高的语言之一。本文将探讨汇编语言中的等号伪指令及其对初学者带来的挑战,并结合社区反馈分析其学习曲线。 ... [详细]
  • 武汉大学计算机学院研究生入学考试科目及专业方向
    武汉大学计算机学院为考生提供了多个硕士点,涵盖计算机科学与技术、软件工程、信息安全等多个领域。考研科目包括思想政治理论、英语一或二、数学一或二以及专业基础课程。具体的专业方向和考试科目详见正文。 ... [详细]
  • 深入探讨CPU虚拟化与KVM内存管理
    本文详细介绍了现代服务器架构中的CPU虚拟化技术,包括SMP、NUMA和MPP三种多处理器结构,并深入探讨了KVM的内存虚拟化机制。通过对比不同架构的特点和应用场景,帮助读者理解如何选择最适合的架构以优化性能。 ... [详细]
  • 深入理解Java中的Collection接口与Collections工具类
    本文详细解析了Java中Collection接口和Collections工具类的区别与联系,帮助开发者更好地理解和使用这两个核心组件。 ... [详细]
  • 本文探讨了领域驱动设计(DDD)的核心概念、应用场景及其实现方式,详细介绍了其在企业级软件开发中的优势和挑战。通过对比事务脚本与领域模型,展示了DDD如何提升系统的可维护性和扩展性。 ... [详细]
  • 本文探讨了MariaDB在当前数据库市场中的地位和挑战,分析其可能面临的困境,并提出了对未来发展的几点看法。 ... [详细]
  • 最近团队在部署DLP,作为一个技术人员对于黑盒看不到的地方还是充满了好奇心。多次咨询乙方人员DLP的算法原理是什么,他们都以商业秘密为由避而不谈,不得已只能自己查资料学习,于是有了下面的浅见。身为甲方,虽然不需要开发DLP产品,但是也有必要弄明白DLP基本的原理。俗话说工欲善其事必先利其器,只有在懂这个工具的原理之后才能更加灵活地使用这个工具,即使出现意外情况也能快速排错,越接近底层,越接近真相。根据DLP的实际用途,本文将DLP检测分为2部分,泄露关键字检测和近似重复文档检测。 ... [详细]
  • 随着网络安全威胁的不断演变,电子邮件系统成为攻击者频繁利用的目标。本文详细探讨了电子邮件系统中的常见漏洞及其潜在风险,并提供了专业的防护建议。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 本文介绍如何在现有网络中部署基于Linux系统的透明防火墙(网桥模式),以实现灵活的时间段控制、流量限制等功能。通过详细的步骤和配置说明,确保内部网络的安全性和稳定性。 ... [详细]
  • 深入理解Redis的数据结构与对象系统
    本文详细探讨了Redis中的数据结构和对象系统的实现,包括字符串、列表、集合、哈希表和有序集合等五种核心对象类型,以及它们所使用的底层数据结构。通过分析源码和相关文献,帮助读者更好地理解Redis的设计原理。 ... [详细]
author-avatar
过客松鼠_230
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有