热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

墨天轮国产数据库沙龙|许力:阿里云原生LindormTSDB数据库,驱动工业IT&OT超融合数字化系统升级

墨天轮国产数据库沙龙|许力:阿里云原生LindormTSDB数据库,驱动工业IT&OT超融合数字化系统升级-分享嘉宾:许力阿里云Lindorm数据库产品经理整理:墨天轮导读大家好,
分享嘉宾:许力 阿里云Lindorm 数据库产品经理
整理:墨天轮

导读

大家好,我是阿里云Lindorm 数据库产品经理许力,今天非常有荣幸给大家介绍阿里云 Lindorm 数据库面向工业场景的最佳实践案例,以及产品的特点,同样要结合行业背景以及客户需求来看待它,因此我今天的分享也就由三个主题组成:市场趋势、顺势而为、核心能力。

市场趋势

工业物联网、车联网行业的迅速发展,产生了大量的数据。评测报告显示,2025年实时数据将占到数据总量的30%,几乎所有实时数据都将由物联网系统产生,同时终端设备代码量激增,终端智能设备、传感器数据将流入云端。因此,到2025年绝大多数的云端新增数据将来源于物联网、车联网等智能互联场景

放眼国内与全球市场,工业物联网都有着巨大的潜力。国家在政策层面积极支持我国工业物联网发展,2019 、2020年相继出台了《“5G+ 工业物联网”512 工程推进方案》和《关于推动工业物联网加快发展的通知》,明确了我国要由工业大国发展迈向工业强国的战略目标,加快推进“互联网 + 制造业”、“5G+ 工业物联网” 的融合创新


图1 工业物联网的国内市场容量

因此在这样的市场趋势下,时序数据的诞生与发展应该顺势而为。

顺势而为

1、工业场景数智升级的问题与挑战

新技术在创造新机遇带动产业升级的同时,也带来了新的技术挑战。更加复杂的系统架构和更高的性能、稳定性要求制约了工业物联网系统实施落地,企业需要专业技术公司来帮助解决数据采集、传输、存储、分析及可视化全链数据处理系统建设难点


图2 数智升级中的建设难点与具体问题

2、阿里云Lindorm TSDB 架构

阿里云Lindorm TSDB 作为时序数据库,它有四个关键的价值:

  • 非对称读写和快速处理海量时序数据
  • 数据存储效率非常高,单位数据量存储成本优势明显。
  • 针对时序数据构建独特的数据存储架构,读取处理时序数据方面相比其他数据库更具有性能、成本优势。
  • 边云一体化,方案集成方便简单。

3、阿里云Lindorm 设计愿景

阿里云Lindorm 的设计愿景体现在高通量高性能易用易维护四个方面。

云原生多模数据库Lindorm是面向互联网、物联网、车联网、工业互联网等设计和优化的超融合数据库,支持宽表、时序、文本、对象、流、空间等多种数据的统一访问和融合处理,并兼容多种开源标准接口和无缝集成三方生态工具,是日志、监控、账单、广告、社交、出行、风控等场景首选数据库,也是为阿里巴巴核心业务提供支撑的数据库之一,真正做到了“让海量数据看得见、存得起“。


图3 Lindorm TSDB 驱动的工业数据云系统架构

阿里云原生数据Lindorm也应用在工业数据云场景上。Lindorm面向BEV新能源电动汽车监控场景,以极致性价比提供海量数据存储、开放生态兼容、多引擎异构数据融合等能力,与江铃和长城汽车等车厂、东软等车联网服务提供商共建联合解决方案支撑未来网联汽车系统数字化升级。


图4 Lindorm 数据库测评证书

核心能力

1、核心能力一:软硬件定义多级存储

首先,在不同的场景下,用户可以通过权衡性能和存储的成本来选择存储方式,比如性能型存储、标准型存储、容量型存储。不仅提供了存储的灵活度,同时也能够在海量数据的场景下,更大地节省存储的投入。

2、核心能力二:自动冷热分离

用关系型数据库来实现冷热数据的分离存储与分库分表的难度很高,因此从工业场景下,更强调的是一个易于维护易用的自动的做冷热数据的一个管理。

Lindorm数据库将数据自动冷热分层,灵活调整分割线,并且应用零改造、全透明访问,冷数据存储成本大幅减少,热数据访问性能有效提升。

3、核心能力三:智能特征压缩

智能特征压缩也是Lindorm TSDB数据库的产品核心能力之一。相比业界通用的SNAPPY, 压缩率提升50%+,压缩比高达10:1


图5 Lindorm TSDB 智能特征压缩的核心能力

4、核心能力四:高性能吞吐

某业务HBase迁移至Lindorm后,写入RT减少为1/3


图6 Lindorm TSDB 高性能吞吐的核心能力

5、核心能力五:流库一体

传统ETL(Extract-Transform-Load,即数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端)存在着使用门槛高,数据延迟大的痛点,而Lindorm数据库流库一体,ELT即开即用的功能。


图7 Lindorm TSDB 流库一体的核心能力

6、核心能力六:时序流计算

时序流计算是产品的第六个核心能力。产品中丰富的时序多维聚合算子,以支持在上层进行异常检测、趋势预测的算法,从而进行复杂的时序数据处理。


图8 Lindorm TSDB 时序流计算的核心能力

7、核心能力七:时序引擎 TSQL

同时在查询语句上,兼容SQL语法,方便进行数据对接与改造。


图9 Lindorm TSDB 时序引擎 TSQL的核心能力

8、核心能力八:时序洞察

最后,Lindorm数据库的核心能力还体现在时序洞察方面。除了有异常检测,预测这类常用的时序分析的算法之外,还有序列数据的降维算法,帮助用户从高维数据里边找到相似性、相关性与因果关系。


图10 Lindorm TSDB 在时序洞察上的核心能力

以上就是我今天的分享内容,谢谢大家!

更多精彩内容,欢迎大家观看视频回放与会议资料
视频回放:https://www.modb.pro/video/6118
会议资料:https://www.modb.pro/doc/56839

  • 查看原文:https://www.modb.pro/db/335237
  • 相关阅读:国产数据库沙龙 | 张玮绚:TDengine,高性能、分布式、支持SQL的时序数据库
  • 查看【国产数据库沙龙】往期生态工具、图数据库专场资源:https://www.modb.pro/topic/157860

墨天轮,围绕数据人的学习成长提供一站式的全面服务,打造集新闻资讯、在线问答、活动直播、在线课程、文档阅览、资源下载、知识分享及在线运维为一体的统一平台,持续促进数据领域的知识传播和技术创新。

关注官方公众号: 墨天轮、 墨天轮平台、墨天轮成长营、数据库国产化 、数据库资讯


推荐阅读
  • 【转】强大的矩阵奇异值分解(SVD)及其应用
    在工程实践中,经常要对大矩阵进行计算,除了使用分布式处理方法以外,就是通过理论方法,对矩阵降维。一下文章,我在 ... [详细]
  • V8不仅是一款著名的八缸发动机,广泛应用于道奇Charger、宾利Continental GT和BossHoss摩托车中。自2008年以来,作为Chromium项目的一部分,V8 JavaScript引擎在性能优化和技术创新方面取得了显著进展。该引擎通过先进的编译技术和高效的垃圾回收机制,显著提升了JavaScript的执行效率,为现代Web应用提供了强大的支持。持续的优化和创新使得V8在处理复杂计算和大规模数据时表现更加出色,成为众多开发者和企业的首选。 ... [详细]
  • 本文深入探讨了NoSQL数据库的四大主要类型:键值对存储、文档存储、列式存储和图数据库。NoSQL(Not Only SQL)是指一系列非关系型数据库系统,它们不依赖于固定模式的数据存储方式,能够灵活处理大规模、高并发的数据需求。键值对存储适用于简单的数据结构;文档存储支持复杂的数据对象;列式存储优化了大数据量的读写性能;而图数据库则擅长处理复杂的关系网络。每种类型的NoSQL数据库都有其独特的优势和应用场景,本文将详细分析它们的特点及应用实例。 ... [详细]
  • 从用户转型为开发者:一场思维升级的旅程 | 专访 StarRocks Committer 周威
    从用户转变为开发者,不仅是一次角色的转换,更是一场深刻的思维升级之旅。本次专访中,StarRocks Committer 周威分享了他如何在这一过程中逐步提升技术能力与思维方式,为开源社区贡献自己的力量。 ... [详细]
  • 对于初学者而言,搭建一个高效稳定的 Python 开发环境是入门的关键一步。本文将详细介绍如何利用 Anaconda 和 Jupyter Notebook 来构建一个既易于管理又功能强大的开发环境。 ... [详细]
  • 深入解析WebP图片格式及其应用
    随着互联网技术的发展,无论是PC端还是移动端,图片数据流量占据了很大比重。尤其在高分辨率屏幕普及的背景下,如何在保证图片质量的同时减少文件大小,成为了亟待解决的问题。本文将详细介绍Google推出的WebP图片格式,探讨其在实际项目中的应用及优化策略。 ... [详细]
  • 在 Ubuntu 22.04 LTS 上部署 Jira 敏捷项目管理工具
    Jira 敏捷项目管理工具专为软件开发团队设计,旨在以高效、有序的方式管理项目、问题和任务。该工具提供了灵活且可定制的工作流程,能够根据项目需求进行调整。本文将详细介绍如何在 Ubuntu 22.04 LTS 上安装和配置 Jira。 ... [详细]
  • 在Java开发中,保护代码安全是一个重要的课题。由于Java字节码容易被反编译,因此使用代码混淆工具如ProGuard变得尤为重要。本文将详细介绍如何使用ProGuard进行代码混淆,以及其基本原理和常见问题。 ... [详细]
  • 从运维繁忙到屡获殊荣:一位CIO的辉煌转型之路
    企业首席信息官(CIO)常常面临一个棘手的问题:如何有效推动公司的数字化转型?尽管数字化转型已成为企业未来发展的重要共识,但如何具体实施依然是许多CIO面临的重大挑战。在日常运营中,企业需要处理大量的业务问题和制定各种发展规划,这使得数字化转型往往被排在较低的优先级。此外,不断涌现的新问题和新规划也常常打乱原有的计划,进一步增加了转型的难度。 ... [详细]
  • 在前一篇文章《Hadoop》系列之“踽踽独行”(二)中,我们详细探讨了云计算的核心概念。本章将重点转向物联网技术,全面解析其基本原理、应用场景及未来发展前景。通过深入分析物联网的架构和技术栈,我们将揭示其在智能城市、工业自动化和智能家居等领域的广泛应用潜力。此外,还将讨论物联网面临的挑战,如数据安全和隐私保护等问题,并展望其在未来技术融合中的重要角色。 ... [详细]
  • 机顶盒,即数字电视机顶盒(Digital TV Set-Top Box,简称STB),是一种放置在电视机旁的设备。它主要用于将数字信号转换为电视能够识别的模拟信号,从而实现高质量的视频和音频播放。机顶盒不仅支持基本的电视节目接收功能,还具备多种增值服务,如互动点播、网络浏览等。随着技术的发展,现代机顶盒集成了更多的智能功能,成为家庭娱乐的重要组成部分。 ... [详细]
  • 智能制造数据综合分析与应用解决方案
    在智能制造领域,生产数据通过先进的采集设备收集,并利用时序数据库或关系型数据库进行高效存储。这些数据经过处理后,通过可视化数据大屏呈现,为生产车间、生产控制中心以及管理层提供实时、精准的信息支持,助力不同应用场景下的决策优化和效率提升。 ... [详细]
  • HBase在金融大数据迁移中的应用与挑战
    随着最后一台设备的下线,标志着超过10PB的HBase数据迁移项目顺利完成。目前,新的集群已在新机房稳定运行超过两个月,监控数据显示,新集群的查询响应时间显著降低,系统稳定性大幅提升。此外,数据消费的波动也变得更加平滑,整体性能得到了显著优化。 ... [详细]
  • Maven + Spring + MyBatis + MySQL 环境搭建与实例解析
    本文详细介绍如何使用MySQL数据库进行环境搭建,包括创建数据库表并插入示例数据。随后,逐步指导如何配置Maven项目,整合Spring框架与MyBatis,实现高效的数据访问。 ... [详细]
  • Vue 实战经验与常见问题总结
    本文总结了 Vue 开发中的一些常见问题和解决方案,包括全局组件的注册、头像显示、背景图路径问题以及 Sass 公用样式的使用方法。 ... [详细]
author-avatar
ccccccc_fly_887
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有