热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

美国血统争议与遗传学研究进展

美国血统争议与遗传学研究进展:在遗传学领域,血统记录的准确性至关重要。然而,在实际操作中,记录错误时有发生。本文探讨了通过遗传学方法验证血统的有效性,并介绍了利用二叉树结构进行家谱分析的技术,特别是中序遍历和前序遍历的应用,为血统争议提供科学依据。

题目描述:

农夫约翰非常认真地对待他的奶牛们的血统。然而他不是一个真正优秀的记帐员。他把他的奶牛 们的家谱作成二叉树,并且把二叉树以更线性的“树的中序遍历”和“树的前序遍历”的符号加以记录而 不是用图形的方法。

你的任务是在被给予奶牛家谱的“树中序遍历”和“树前序遍历”的符号后,创建奶牛家谱的“树的 后序遍历”的符号。每一头奶牛的姓名被译为一个唯一的字母。(你可能已经知道你可以在知道树的两 种遍历以后可以经常地重建这棵树。)显然,这里的树不会有多于 26 个的顶点。 这是在样例输入和 样例输出中的树的图形表达方式:

        C
       / \
       /  \
       B   G
      / \  /
     A D H
       / \
       E F

 

树的中序遍历是按照左子树,根,右子树的顺序访问节点。

树的前序遍历是按照根,左子树,右子树的顺序访问节点。

树的后序遍历是按照左子树,右子树,根的顺序访问节点。

 


输入格式

第一行: 树的中序遍历

第二行: 同样的树的前序遍历


输出格式

单独的一行表示该树的后序遍历。


输入输出样例

输入 #1

ABEDFCHG
CBADEFGH

输出 #1

AEFDBHGC
解题思路:
首先我们要先找到两个遍历的根,前序遍历的根就是第一个节点,然后根据这个可以在中序遍历中找到根的位置,
而中序遍历的最左边就是左子树的左边界,根节点的左边就是左子树的右边界,根节点右边是右子树的左边界,最右边就是右子树的右边界,以此类推,分别给左右子树递归可以求得次根节点
而后序遍历是左右根的遍历顺序,在每次递归完当前左右子树之后就输出根节点的值。
代码如下:

#include
using namespace std;
char mid[100];
char fir[100];
int i,j;
void digui(int fl,int fr,int ml,int mr)
{
int gen,l,r;
for(i=0;i<strlen(mid);i++)
if(mid[i]==fir[fl])break;
gen=i;
l=gen-ml;

r=mr-gen;
if(l>0)
{
digui(fl+
1,fl+l,ml,ml+l-1);
}
if(r>0)
{
digui(fr-r+
1,fr,gen+1,gen+r);
}
cout<
}
int main()
{
cin>>mid>>fir;
digui(
0,strlen(fir)-1,0,strlen(mid)-1);
return 0;
}




 



推荐阅读
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 深入理解 SQL 视图、存储过程与事务
    本文详细介绍了SQL中的视图、存储过程和事务的概念及应用。视图为用户提供了一种灵活的数据查询方式,存储过程则封装了复杂的SQL逻辑,而事务确保了数据库操作的完整性和一致性。 ... [详细]
  • 在前两篇文章中,我们探讨了 ControllerDescriptor 和 ActionDescriptor 这两个描述对象,分别对应控制器和操作方法。本文将基于 MVC3 源码进一步分析 ParameterDescriptor,即用于描述 Action 方法参数的对象,并详细介绍其工作原理。 ... [详细]
  • 本文探讨了如何通过最小生成树(MST)来计算严格次小生成树。在处理过程中,需特别注意所有边权重相等的情况,以避免错误。我们首先构建最小生成树,然后枚举每条非树边,检查其是否能形成更优的次小生成树。 ... [详细]
  • 本文详细探讨了KMP算法中next数组的构建及其应用,重点分析了未改良和改良后的next数组在字符串匹配中的作用。通过具体实例和代码实现,帮助读者更好地理解KMP算法的核心原理。 ... [详细]
  • 本文介绍如何使用Objective-C结合dispatch库进行并发编程,以提高素数计数任务的效率。通过对比纯C代码与引入并发机制后的代码,展示dispatch库的强大功能。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 本文详细介绍了 Dockerfile 的编写方法及其在网络配置中的应用,涵盖基础指令、镜像构建与发布流程,并深入探讨了 Docker 的默认网络、容器互联及自定义网络的实现。 ... [详细]
  • UNP 第9章:主机名与地址转换
    本章探讨了用于在主机名和数值地址之间进行转换的函数,如gethostbyname和gethostbyaddr。此外,还介绍了getservbyname和getservbyport函数,用于在服务器名和端口号之间进行转换。 ... [详细]
  • Splay Tree 区间操作优化
    本文详细介绍了使用Splay Tree进行区间操作的实现方法,包括插入、删除、修改、翻转和求和等操作。通过这些操作,可以高效地处理动态序列问题,并且代码实现具有一定的挑战性,有助于编程能力的提升。 ... [详细]
  • 2023年京东Android面试真题解析与经验分享
    本文由一位拥有6年Android开发经验的工程师撰写,详细解析了京东面试中常见的技术问题。涵盖引用传递、Handler机制、ListView优化、多线程控制及ANR处理等核心知识点。 ... [详细]
  • 题目Link题目学习link1题目学习link2题目学习link3%%%受益匪浅!-----&# ... [详细]
  • 本文探讨了 C++ 中普通数组和标准库类型 vector 的初始化方法。普通数组具有固定长度,而 vector 是一种可扩展的容器,允许动态调整大小。文章详细介绍了不同初始化方式及其应用场景,并提供了代码示例以加深理解。 ... [详细]
  • 本实验主要探讨了二叉排序树(BST)的基本操作,包括创建、查找和删除节点。通过具体实例和代码实现,详细介绍了如何使用递归和非递归方法进行关键字查找,并展示了删除特定节点后的树结构变化。 ... [详细]
  • SQLite 动态创建多个表的需求在网络上有不少讨论,但很少有详细的解决方案。本文将介绍如何在 Qt 环境中使用 QString 类轻松实现 SQLite 表的动态创建,并提供详细的步骤和示例代码。 ... [详细]
author-avatar
哈王豐3_408
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有