热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

MatinOpenCV英文文档

OpenCVC++n-dimensionaldensearrayclassTheclassMatrepresentsann-dimensionaldensenumericals

OpenCV C++ n-dimensional dense array class The class "Mat" represents an n-dimensional dense numerical single-channel or multi-channel array. It can be used to store real or complex-valued vectors and matrices, grayscale or color images, voxel volumes, vector fields, point clouds, tensors, histograms (though, very high-dimensional histograms may be better stored in a "SparseMat"). The data layout of the array M is defined by the array "M.step[]", so that the address of element (i_0,...,i_(M.dims-1)), where 0 <= i_k= M.step[i+1]" (in fact, "M.step[i] >= M.step[i+1]*M.size[i+1]"). This means that 2-dimensional matrices are stored row-by-row, 3-dimensional matrices are stored plane-by-plane, and so on. "M.step[M.dims-1]" is minimal and always equal to the element size "M.elemSize()". So, the data layout in "Mat" is fully compatible with "CvMat", "IplImage", and "CvMatND" types from OpenCV 1.x. It is also compatible with the majority of dense array types from the standard toolkits and SDKs, such as Numpy (ndarray), Win32 (independent device bitmaps), and others, that is, with any array that uses *steps* (or *strides*) to compute the position of a pixel. Due to this compatibility, it is possible to make a "Mat" header for user-allocated data and process it in-place using OpenCV functions. There are many different ways to create a "Mat" object. The most popular options are listed below: * Use the "create(nrows, ncols, type)" method or the similar "Mat(nrows, ncols, type[, fillValue])" constructor. A new array of the specified size and type is allocated. "type" has the same meaning as in the "cvCreateMat" method. For example, "CV_8UC1" means a 8-bit single-channel array, "CV_32FC2" means a 2-channel (complex) floating-point array, and so on. As noted in the introduction to this chapter, "create()" allocates only a new array when the shape or type of the current array are different from the specified ones. * Create a multi-dimensional array: It passes the number of dimensiOns=1 to the "Mat" constructor but the created array will be 2-dimensional with the number of columns set to 1. So, "Mat.dims" is always >= 2 (can also be 0 when the array is empty). * Use a copy constructor or assignment operator where there can be an array or expression on the right side (see below). As noted in the introduction, the array assignment is an O(1) operation because it only copies the header and increases the reference counter. The "Mat.clone()" method can be used to get a full (deep) copy of the array when you need it. * Construct a header for a part of another array. It can be a single row, single column, several rows, several columns, rectangular region in the array (called a *minor* in algebra) or a diagonal. Such operations are also O(1) because the new header references the same data. You can actually modify a part of the array using this feature, for example: Due to the additional "datastart" and "dataend" members, it is possible to compute a relative sub-array position in the main *container* array using "locateROI()": As in case of whole matrices, if you need a deep copy, use the "clone()" method of the extracted sub-matrices. * Make a header for user-allocated data. It can be useful to do the following: #. Process "foreign" data using OpenCV (for example, when you implement a DirectShow* filter or a processing module for "gstreamer", and so on). For example: #. Quickly initialize small matrices and/or get a super-fast element access. Partial yet very common cases of this *user-allocated data* case are conversions from "CvMat" and "IplImage" to "Mat". For this purpose, there are special constructors taking pointers to "CvMat" or "IplImage" and the optional flag indicating whether to copy the data or not. Backward conversion from "Mat" to "CvMat" or "IplImage" is provided via cast operators "Mat.operator CvMat() const" and "Mat.operator IplImage()". The operators do NOT copy the data. * Use MATLAB-style array initializers, "zeros(), ones(), eye()", for example: * Use a comma-separated initializer: With this approach, you first call a constructor of the "Mat_" class with the proper parameters, and then you just put "<<" operator followed by comma-separated values that can be constants, variables, expressions, and so on. Also, note the extra parentheses required to avoid compilation errors. Once the array is created, it is automatically managed via a reference-counting mechanism. If the array header is built on top of user-allocated data, you should handle the data by yourself. The array data is deallocated when no one points to it. If you want to release the data pointed by a array header before the array destructor is called, use "Mat.release()". The next important thing to learn about the array class is element access. This manual already described how to compute an address of each array element. Normally, you are not required to use the formula directly in the code. If you know the array element type (which can be retrieved using the method "Mat.type()"), you can access the element M_(ij) of a 2-dimensional array as: assuming that M is a double-precision floating-point array. There are several variants of the method "at" for a different number of dimensions. If you need to process a whole row of a 2D array, the most efficient way is to get the pointer to the row first, and then just use the plain C operator "[]" : Some operations, like the one above, do not actually depend on the array shape. They just process elements of an array one by one (or elements from multiple arrays that have the same coordinates, for example, array addition). Such operations are called *element-wise*. It makes sense to check whether all the input/output arrays are continuous, namely, have no gaps at the end of each row. If yes, process them as a long single row: In case of the continuous matrix, the outer loop body is executed just once. So, the overhead is smaller, which is especially noticeable in case of small matrices. Finally, there are STL-style iterators that are smart enough to skip gaps between successive rows: The matrix iterators are random-access iterators, so they can be passed to any STL algorithm, including "std.sort()".

Mat in OpenCV英文文档


推荐阅读
  • QUIC协议:快速UDP互联网连接
    QUIC(Quick UDP Internet Connections)是谷歌开发的一种旨在提高网络性能和安全性的传输层协议。它基于UDP,并结合了TLS级别的安全性,提供了更高效、更可靠的互联网通信方式。 ... [详细]
  • 本文探讨了如何通过最小生成树(MST)来计算严格次小生成树。在处理过程中,需特别注意所有边权重相等的情况,以避免错误。我们首先构建最小生成树,然后枚举每条非树边,检查其是否能形成更优的次小生成树。 ... [详细]
  • 深入理解OAuth认证机制
    本文介绍了OAuth认证协议的核心概念及其工作原理。OAuth是一种开放标准,旨在为第三方应用提供安全的用户资源访问授权,同时确保用户的账户信息(如用户名和密码)不会暴露给第三方。 ... [详细]
  • 2023 ARM嵌入式系统全国技术巡讲旨在分享ARM公司在半导体知识产权(IP)领域的最新进展。作为全球领先的IP提供商,ARM在嵌入式处理器市场占据主导地位,其产品广泛应用于90%以上的嵌入式设备中。此次巡讲将邀请来自ARM、飞思卡尔以及华清远见教育集团的行业专家,共同探讨当前嵌入式系统的前沿技术和应用。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 深入理解 Oracle 存储函数:计算员工年收入
    本文介绍如何使用 Oracle 存储函数查询特定员工的年收入。我们将详细解释存储函数的创建过程,并提供完整的代码示例。 ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • CSS 布局:液态三栏混合宽度布局
    本文介绍了如何使用 CSS 实现液态的三栏布局,其中各栏具有不同的宽度设置。通过调整容器和内容区域的属性,可以实现灵活且响应式的网页设计。 ... [详细]
  • Vue 2 中解决页面刷新和按钮跳转导致导航栏样式失效的问题
    本文介绍了如何通过配置路由的 meta 字段,确保 Vue 2 项目中的导航栏在页面刷新或内部按钮跳转时,始终保持正确的 active 样式。具体实现方法包括设置路由的 meta 属性,并在 HTML 模板中动态绑定类名。 ... [详细]
  • 本文介绍如何在 Android 中通过代码模拟用户的点击和滑动操作,包括参数说明、事件生成及处理逻辑。详细解析了视图(View)对象、坐标偏移量以及不同类型的滑动方式。 ... [详细]
  • 深入解析Android自定义View面试题
    本文探讨了Android Launcher开发中自定义View的重要性,并通过一道经典的面试题,帮助开发者更好地理解自定义View的实现细节。文章不仅涵盖了基础知识,还提供了实际操作建议。 ... [详细]
  • 国内BI工具迎战国际巨头Tableau,稳步崛起
    尽管商业智能(BI)工具在中国的普及程度尚不及国际市场,但近年来,随着本土企业的持续创新和市场推广,国内主流BI工具正逐渐崭露头角。面对国际品牌如Tableau的强大竞争,国内BI工具通过不断优化产品和技术,赢得了越来越多用户的认可。 ... [详细]
  • 本文详细介绍了Java中org.neo4j.helpers.collection.Iterators.single()方法的功能、使用场景及代码示例,帮助开发者更好地理解和应用该方法。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • Linux 系统启动故障排除指南:MBR 和 GRUB 问题
    本文详细介绍了 Linux 系统启动过程中常见的 MBR 扇区和 GRUB 引导程序故障及其解决方案,涵盖从备份、模拟故障到恢复的具体步骤。 ... [详细]
author-avatar
历史本轻狂
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有