热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

使用经验风险最小化ERM方法来估计模型误差开坑

虽然已经学习了许多机器学习的方法,可只有我们必须知道何时何处使用哪种方法,才能将他们正确运用起来。那不妨使用经验最小化ERM方法来估计。首先:其中,δ代表训练出错的概

虽然已经学习了许多机器学习的方法,可只有我们必须知道何时何处使用哪种方法,才能将他们正确运用起来。

那不妨使用经验最小化ERM方法来估计 。

 

首先:

 

其中,

δ代表训练出错的概率

k代表假设类的个数

m代表样本(数据集)个数

γ代表误差阈值

于是我们可以得到:

 

但我们的假设都是建立在k有限的条件上,那么如果Η为无限类,又该如何估计呢?

先说一个粗略结论:其实根据有限字长效应,我们知道,每个数最多有64字节,例如如果有d个特征,则:

也就是说:

这个粗略结论已经比较实用了,不是吗。

 

其实,在现实情况中,不一定满足独立同分布的条件,因此真正的结果会比此结果乐观的多。具体的数字意义也不大,只需确定数量级即可。

不妨记住一个简答的结论:所需样本数量与VC维成正比


推荐阅读
author-avatar
悦md悦小坏蛋
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有